Mervi Johanna Mantsinen

Primary tabs

Biography

Short biography:

I graduated in Technical Physics at Helsinki University of Technology (HUT), Finland in 1992. I carried out my fusion energy at HUT until 1995 when I moved to the JET Joint European Torus, the largest tokamak in the world, located in the UK. At JET, I worked as Ion Cyclotron Resonance Frequency (ICRF) Physics Expert, Scientific Coordinator, Responsible Officer for several large modelling codes and Physicist in Charge as well as trained as Session Leader of JET experiments. My thesis for the degree of Doctor of Science in Technology at HUT in 1999 was based on my research at JET. In 2003 I became Deputy Leader of Task Force Heating and Current Drive at JET, with approx. 80 members at several research institutions across Europe. In 2006 I joined the ICRF group of the ASDEX Upgrade tokamak, Max-Planck-Institute for Plasma Physics, Germany. In October 2013 I was appointed ICREA Research Professor at BSC-CNS where I have set up and lead a fusion research group (fusion.bsc.es).

Research interests:

My research is directed towards contributing to the development of nuclear fusion as a source of energy and, in particular, to the ITER project. ITER is an international nuclear fusion R&D project, which is building the world's largest experimental tokamak nuclear fusion reactor in France. ITER aims to demonstrate that fusion energy is scientifically and technologically feasible. My research is focused in the numerical modelling of experiments in magnetically confined fusion devices in preparation for ITER operation, working towards the objectives of the European fusion research programme EUROfusion for Horizon 2020 in close collaboration with ITER, International Tokamak Physics Activity, EUROfusion and the Spanish national fusion laboratory CIEMAT. My overall objective is to enhance the modelling capabilities by code validation and optimization, with the ultimate goal of helping improve the performance of ITER and future fusion reactors.

Key words: nuclear fusion, plasma physics, ITER, numerical modelling, experimental fusion devices

Main Research Lines