Iker Nunez Carpintero
Primary tabs
Biography
Postdoctoral researcher working in the Machine Learning for Biomedical Reaserch Unit and the Computational Biology Group (Life Sciences department).
Main Research fields:
Complex and multilayer biomedical network analysis for Rare Disease and Cancer multi-omics
Deep learning for Cancer Research
Previous work:
- MSc Student at Instituto de Biología y Genética Molecular (IBGM). Mucosal Immunology Lab, led by Eduardo Arranz and José Antonio Garrote Adrados. (September 2017 to July 2018)
- BSc Student at Spanish National Centre for Biotechnology (CNB). Computational Systems Biology Group, led by Florencio Pazos (February to July 2017)
Educación
Degree | University | Year |
---|---|---|
BSc in Biology | Universidad de Alcalá | 2013-2017 |
MSc in Biomedical Research | Instituto de Biología y Genética Molecular (IBGM) - Universidad de Valladolid (UVa) - Consejo Superior de Investigaciones Científicas (CSIC) |
2017-2018 |
PhD in Biomedicine / Bioinformatics | Barcelona Supercomputing Center (BSC-CNS) - Universitat de Barcelona (UB) | 2018-2023 |
Postdoctoral Researcher |
Barcelona Supercomputing Center (BSC-CNS)
|
2023-Current |
Research
Núñez-Carpintero I, Rigau M, Bosio M, O’Connor E, Spendiff S, Azuma Y, et al. Rare disease research workflow using multilayer networks elucidates the molecular determinants of severity in Congenital Myasthenic Syndromes. Nature Communications. 2024 Feb 28;15(1):1227.
Armaos A, Serra F, Núñez-Carpintero I, Seo JH, Baca SC, Gustincich S, et al. The PENGUIN approach to reconstruct protein interactions at enhancer-promoter regions and its application to prostate cancer. Nature Communications. 2023 Dec 6;14(1):8084.
Núñez-Carpintero, I., Petrizzelli, M., Zinovyev, A., Cirillo, D. and Valencia, A. (2021). 'The multilayer community structure of medulloblastoma'. iScience 24. https://doi.org/10.1016/j.isci.2021.102365
Cirillo, D., Núñez‐Carpintero, I. and Valencia, A. (2021) ‘Artificial intelligence in cancer research: learning at different levels of data granularity’, Molecular Oncology, 15(4), pp. 817–829. doi: https://doi.org/10.1002/1878-0261.12920.