

Leonardo Flores Añover - In my humble opinion...

Where are we now?

EuroHPC Roadmap 2025 - 2027

Commission

Federation – Hyperconnectivity 2024+/2025

- > A hyper-connected, federated, and secure HPC and quantum computing service and data infrastructure ecosystem
- > Federation of EuroHPC resources in 2024+
- > Hyperconnectivity in 2025

EuroHPC AI Factories

GenAl and Al foundation models play a key role in the future of technology and society.

HPC + AI are contributing to innovative and competitive economy and improving citizens' life.

➡ AI Factories Call for Expression of Interest in July 2024.

Drivers for the future EU HPC infrastructures?

The future of European competitiveness: Report by Mario Draghi

Pursuit of inclusive economic growth - Pillars of prosperity

- sustainable competitiveness
- economic security
- open strategic autonomy
- fair competition

Analysis: the EU is falling behind in providing state-of-the-art infrastructures for the digitalisation of the economy

Recommendations for closing the innovation gap: A programme to tackle the innovation deficit, including

 to lower the cost of AI deployment by increasing computational capacity and making available its network of high-performance computers

In-depth analysis and recommendations 3.2 Computing and AI

Analysis: the EU has secured a strong international position in HPC – a unique advantage to exploit in areas such as AI, and to stimulate private investment

The EU should adopt a new 'EU Cloud and AI Development Act':

- enhancing European HPC, AI and quantum capabilities and infrastructure
- harmonising cloud architecture requirements and procurement processes
- coordinating priority initiatives to scale-up private involvement and financing

Recommendations HPC/AI/Quantum:

- 1. EuroHPC upgrade program
- 2. Launch an 'EU Vertical AI Priorities Plan'
- 3. Harmonise national 'AI Sandbox regimes'

"Mo money, mo problems."

The Notorious B.I.G.

A rich and paradoxical environment for future HPC infrastructures

A rich and paradoxical environment for future HPC infrastructures

Draghi's recommendations and possible implications for updated EuroHPC ...

Regularly increase computational capacity dedicated to the training and algorithmic development of AI models in existing EU HPC centres, and for the development of tomorrow's exascale and post-exascale computing

Result of 2009 Workshop Compared to First Exascale System

			Predicted	Actual	
Systems	2009	Pre-Exascale	Exascale	Frontier	
System peak	2 Peta	100-200 Peta	1 Exa	> 1.5 Exa	
Power	6 MW	~15 MW	~20 MW	29 MW (< 20MW per exaflop)
System memory	0.3 PB	5 PB	64 PB (+)	45 PB (9.6 PB + 36 PB NVM)	
Node performance	125 GF	0.5 TF or 7 TF 1,2 or 15TF NDA		IDA	
Node memory BW	25 GB/s	1-2TB/s 2-4TB/s		3.2 TB/S	
Node concurrency	12	O(100)	O(1k) or 10k	O(100K)	
Total Node Interconnect BW	3.5 GB/s	100-200 GB/s 10:1 or 2:1 vs memory BW	200-400GB/s (1:4 or 1:8 from memory BW)	100 GB/s	
System size (nodes)	18,700	50,000 or 500,000	O(100,000) or O(1M)	< 10,000	
Total concurrency	225,000	O(100,000,000) *O(10)- O(50) to hide latency	O(billion) * O(10) to O(100) for latency hiding	O(billion)	
Storage	15 PB	150 PB	500-1000 PB	716 PB	
10	0.2 TB	10 TB/s	60 TB/s	75 TB/s NVM and 9.4 TB/s HDD	
MTTI	days	O(1day)	O(0.1 day)	O(0.3 day)	1
			Supercomputer/Sys	Performance	(

ENERGY – DECARBONISATION - WATER

	15 10/5 11111 414 511 10/5110				
(0.1 day)	O(0.3 day)				
Supercomputer/Sys	Performance	Current Power	Projected Power	Projected Power	Projected Power
tem	(Exaflops)	Consumption	Consumption at 10 EF	Consumption at 100 EF	Consumption at 1000 EF
Frontier (Oak	1.206	22.8 MW	228 MW (≈0.23 nuclear	2,280 MW (≈2.3 nuclear	22,800 MW (≈23 nuclear
Ridge, USA)			plants)	plants)	plants)
Aurora (Argonne,	1.012	38.7 MW	387 MW (≈0.39 nuclear	3,870 MW (≈3.9 nuclear	38,700 MW (≈39 nuclear
USA)			plants)	plants)	plants)
Eagle (Microsoft	0.561	15.5 MW	276 MW (≈0.28 nuclear	2,760 MW (≈2.8 nuclear	27,600 MW (≈28 nuclear
Azure, USA)			plants)	plants)	plants)
			\mathbf{A}		
Fugaku (RIKEN,	0.442	29.9 MW	676 MW (≈0.68 nuclear	6,760 MW (≈6.8 nuclear	67,600 MW (≈68 nuclear
Japan)			plants)	plants)	plants)
LUMI (CSC, Finland)	0.380	7.1 MW	187 MW (≈0.19 nuclear	1,870 MW (≈1.9 nuclear	18,700 MW (≈19 nuclear
			plants)	plants)	plants)

- Reinforcing the pipeline from innovation into commercialisation
- Public infrastructures & private use for commercial access

- Expansion of EuroHPC to additional cloud and storage capabilities for AI training, fine-tuning and inference
- Additional cloud and storage capabilities distributed throughout Europe
- Validate hosting in 'regulatory compliant' infrastructures (start-ups)
- EU-wide framework (inc. state aid rules) enabling public 'computing capital' for EU innovative SMEs in exchange of financial returns (e.g. equity options, royalties or dividends) for reinvestments in infrastructure

Open up EuroHPC to a **'federated AI model'** favouring cooperation of public-private infrastructure to provide AI training power, leveraging the joint capacity of public computing and private resources and increasing the EU's competitive scale

How to move from AI Factories to "federated AI model" ?

Develop quantum labs or nodes attached to all EU HPC centres and launch public-private partnerships – involving large EU tech leaders as a priority – to co-invest in the whole frontier tech stack, including neuromorphic and quantum chips.

.... and more

Data

Data infrastructures (AI models, data bridges, data lakes, European data spaces) !!

Applications

- Digital twins / Edge cloud digital continuum
- Public administration
- Manhattan-scale projects to solve societal problems

Infrastructure

- AI vs "Traditional" HPC
- Dedicated infrastructures / flexible configuration of supercomputer resources?

Data – applications - infrastructure

Defence & Cyber-security

- Support to dual use (EU Structural funds)
- Misuse of HPC infrastructures disinformation, virus/weapons/terrorism... legal implications ?
- Security by Design and Zero Trust vs and open access to internet, relaxed authentication/authorization
- Location of critical infrastructure?

Sovereignty

- Risks of supply chain
- Geopolitics (control of fab facilities, export control etc.)
- Sovereign clouds (?)
- Technological development

Skills - ecosystems

- 1. How to support the growth of an ecosystem ?
- 2. A great variety of new skills infrastructure, computing, applications, civil engineering, legal...

- Global challenges by collaboration vs EU/national interests (use, data, ...) going beyond roadmaps ?
- International cooperation with developing countries: Access... skills, applications, services, etc.

Al4Science – Science4Al

- Heterogeneous and emerging architectures, Quantum, Neuromorphic ...
- Incredibly flexible mechanisms for (re)configuration, virtualisation, federation of resources, resource allocation, monitoring...
- Optimisation tools (traces ③)
- Interoperability and portability
- Software stack
- Workflows
- Software is the key? Algorithms ?
- Moore's law

All is Al / Al is all (?)

Conclusions - personal

HPC Infrastructures

• HW/SW/Services/People/Policies, etc. cannot be addressed in isolation!

Users

- Representativity and structures
- Facing the new environments

Role of EU Supercomputing Centres (SC)

- Excellence poles
- Networking of AIF
- Actively contributing to the future of EU HPC infrastructures

What is the European model for future infrastructures?

Preparation in 2025?

THANK YOU!