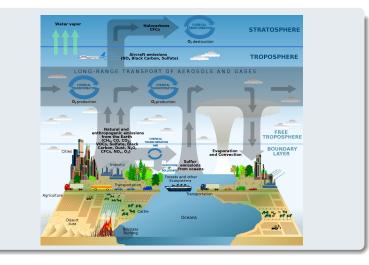
Numerical modelling of air quality

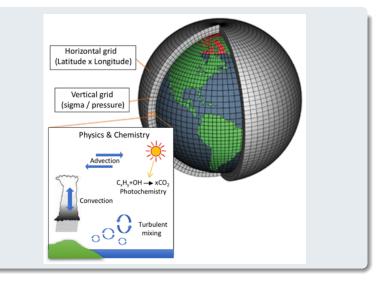
MPI for Chemistry & CARE-C Cyl

19th October 2023


Emissions

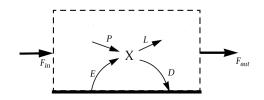
Deposition

Transport


Conclusions

The chemistry of the Atmosphere

Numerical modelling

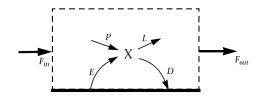


Simple Box Model

Introduction

- Emissions
- Deposition
- Transport
- Conclusions

Concentration of X


- emission (E)
- transport (F_{in} and F_{out})
- reaction (Production an Loss)
- deposition (D)

Simple Box Model

- Emissions
- Deposition
- Transport
- Conclusions

Case studies

- Emission
- Deposition
- Transport

Emissions

Deposition

Transport

Conclusions

All work performed with the EMAC model ECHAM5/MESSy for Atmospheric Chemistry

www.messy-interface.org

Main characteristics:

- Basemodel: General circulation model ECHAM5 (developed at the MPI for Meteorology in Hamburg).
- Chemistry submodels : MESSy, Modular Earth Submodel System

Emissions

Deposition

Transport

Conclusions

At any time during the development phase a "state-of-the-art" model for scientific applications is available.

Emissions

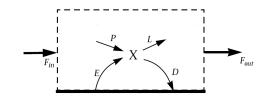
Deposition

Transport

Conclusions

Global / regional chemistry climate modelling (methodological milestones)

Hence:


Flexible for different studies on atmospheric chemistry

Emissions

Emissions effects

- Observations and Model Results - evaluation Results - emission
- importance
- Deposition
- Transport
- Conclusions

Case studies

- Emission
- Deposition

Simple Box Model

• Transport

Emissions

Emissions effects

Observations and Model Results - evaluation Results - emission importance

Deposition

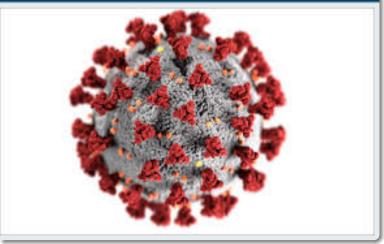
Transport

Conclusions

Can we prove the importance of emissions on air quality? With real life experiment?

Emissions

Emissions effects


Observations and Model Results - evaluation Results - emission importance

Deposition

Transport

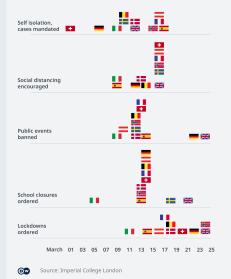
Conclusions

Strong influence on European emissions in 2020

Emission

Emissions effects

Observations and Model Results - evaluation


Results - emission importance

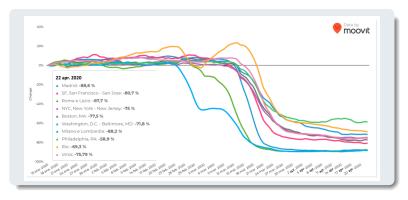
Deposition

Transport

Conclusions

Europe: Coronavirus interventions

Emissions


Emissions effects

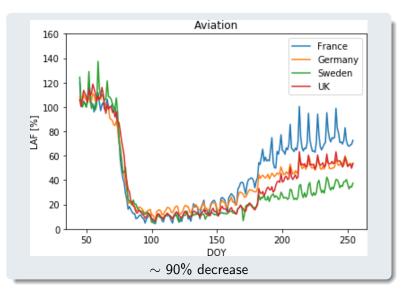
Observations and Model Results - evaluation Results - emission

Deposition

Transport

Conclusions

Emissions

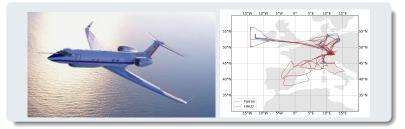

Emissions effects

Observations and Model Results - evaluation Results - emission importance

Deposition

Transport

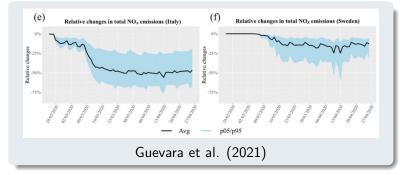
Conclusions



- Emissions
- Emissions effect
- Observations and Model
- Results evaluation
- Results emission importance
- Deposition
- Transport
- Conclusions

BLUESKY campaign

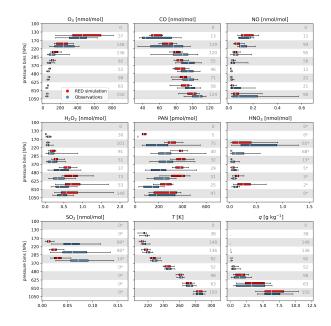
- 16th May 9th June 2020
- Europe and the North Atlantic flight corridor
- High Altitude and Long Range (HALO) research aircraft
- Falcon research aircraft
- 8 and 12 flights were conducted with the HALO and the Falcon



- Emissions
- Emissions effect
- Observations and Model
- Results evaluation
- Results emission importance
- Deposition
- Transport
- Conclusions

Model simulation

- Covering January-July 2020
- 1.8 degree resolution, 47 levels
- inclusion of stratosphere
- reduction emission coefficient for Europe
 - Industry
 - Energy
 - Transport
 - Aviation (special)


results - trace gases

Emissions

Emissions effect

- Observations and Model
- Results evaluation
- Results emission importance
- Deposition
- Transport
- Conclusions

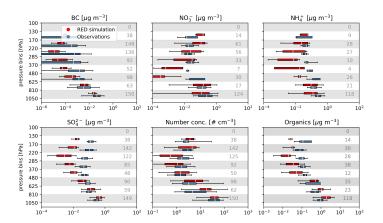
results - aerosols

Introduction

Emissions

Emissions effect

Observations and Model


Results - evaluation

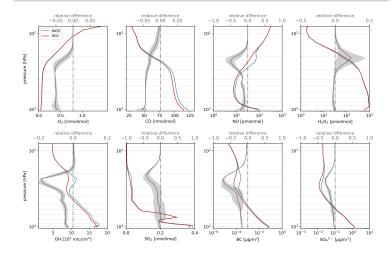
Results - emission importance

Deposition

Transport

Conclusions

Reasonable comparison between model results and observations

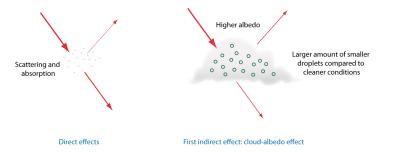


Emissions

- Emissions effects
- Observations and Model
- Results evaluation
- Results emission importance
- Deposition
- Transport
- Conclusions

Effect of reduced emissions

comparison with Business As Usual scenario



Effect of reduced emissions

- Emissions
- Emissions effects
- Observations and Model
- Results evaluation
- Results emission importance
- Deposition
- Transport
- Conclusions

Multiple simulation

- without cloud interaction, BASE and RED
- with could interaction BASECLOUD and RECLOUD

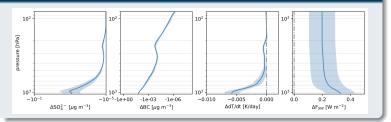
Emissions

Emissions effects

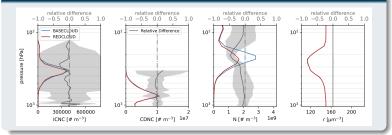
Observations and Model

Results - evaluation

Results - emission importance


Deposition

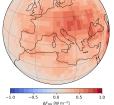
Transport


Conclusions

Effect of reduced emissions

Without aerosol-cloud interaction

with aerosol cloud interaction


- Emissions
- Emissions effects
- Observations and Model
- Results evaluation
- Results emission importance
- Deposition
- Transport
- Conclusions

effect of reduced emissions

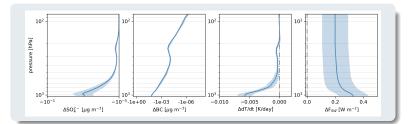
Aerosol direct and indirect effects on the shortwave radiation flux at the top of atmosphere (TOA) and surface (SRF) over Europe for May.

	RED-STD	REDCLOUD-STDCLOUD	
$\Delta F_{ m SW}[Wm^{-2}]$	direct	indirect	total
TOA	0.090 ± 0.035	0.188 ± 0.759	0.281 ± 0.928
TOA clear sky	0.198 ± 0.092	0.000 ± 0.006	0.186 ± 0.106
SRF	0.209 ± 0.053	0.233 ± 1.089	$\textbf{0.443} \pm \textbf{1.063}$
SRF clear sky	0.327 ± 0.105	0.001 ± 0.023	0.307 ± 0.115

Emissions

Emissions effect

Observations and Model


Results - evaluation

Results - emission importance

Deposition

Transport

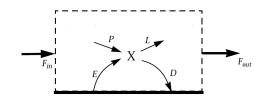
Conclusions

Conclusions:

- Large relative changes in the UT
- Large absolute changes at the surface

All results published here: https://doi.org/10.5194/acp-22-10901-2022

A. Pozzer 30.08.2023


Effect of reduced emissions

Emissions

Deposition

- The observations
- Comparison with th
- Results
- Results
- Transport
- Conclusions

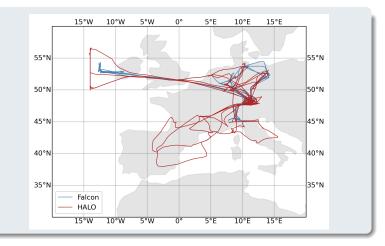
Case studies

- Emission
- Deposition

Simple Box Model

• Transport

Observations


Introduction

Emissions

Deposition

The observations

- Comparison with the model
- Results
- Results
- Transport
- Conclusions

Observations

Introduction

Emissions

Deposition

The observations

- Comparison with the model
- Results
- Results
- Transport
- Conclusions

TRIHOP (TRacer In-situ quantum cascade laser absorption spectrometer/ Hydrogen and Organic Peroxide monitor) Measurements of H_2O_2

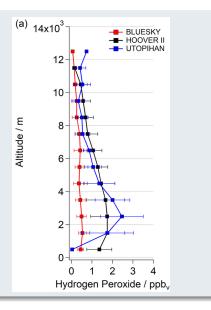
Observations

Introduction

Emissions

Deposition

The observations

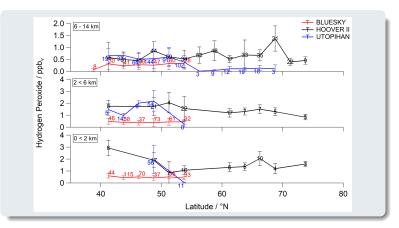

Comparison with th model

Results

Results

Transport

Conclusion



Emissions

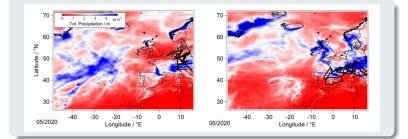
Deposition

The observations

- Comparison with the model
- Results
- Results
- Transport
- Conclusions

A. Pozzer 30.08.2023

Observations


Emissions

Deposition

The observations

- Comparison with the model
- Results
- Results
- Transport
- Conclusion

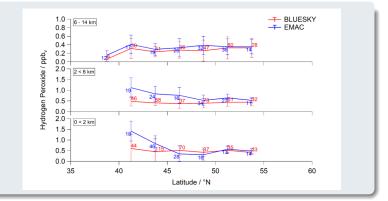
Observations

Emissions

Deposition

The observation

Comparison with the model


Results

Results

Transport

Conclusions

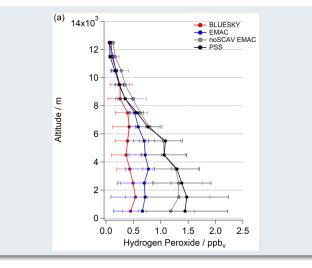
Model-Observations comparison

Emissions

Depositior

The observation

Comparison with the model


Results

Results

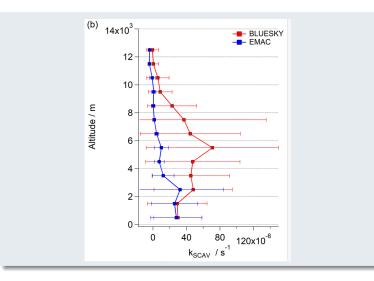
Transport

Conclusions

Emissions

Deposition

The observations


Comparison with th model

Results

Results

Transport

Conclusion

A. Pozzer 30.08.2023

Effect of deposition

NECTIONING

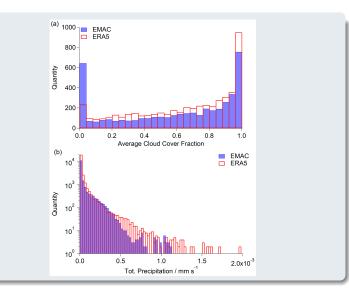
Introduction

Emissions

Deposition

The observations

Comparison with th model


Results

Results

Transport

Conclusion

Effect of deposition

Emissions

Deposition

The observations

Comparison with the model

Results

Results

Transport

Conclusions

Effect of deposition

Conclusions:

- Precipitation (wet deposition) is important
- Dynamics must be correctly reproduced

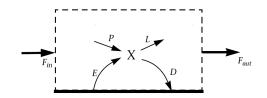
See the publication: https://doi.org/10.5194/acp-22-9483-2022

Simple Box Model

Introduction

Emissions

Deposition


Transport

The observations

Comparison with th model

Results

Conclusions

Case studies

- Emission
- Deposition
- Transport

Atmospheric Transport

Is pollutant's transport important for air quality?

Comparison with t model

Transport

Results

Conclusions

Emissions

Depositior

The observations

Comparison with th model

Results

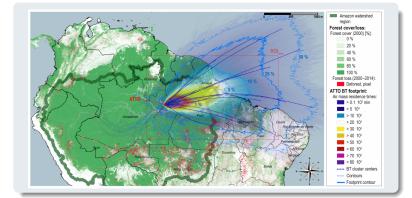
Conclusions

- 325-metre-tall tower in the rainforest
- samples from the soil surface to above the forest canopy
- equipped with a broad range of instruments

Emissions

Deposition

Transport


The observations

Comparison with the model

Results

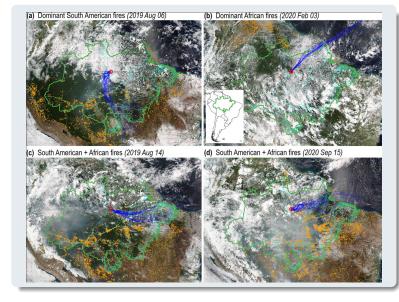
Conclusions

ATTO tower

Emissions

Depositior

The observations


Comparison with t

model

Results

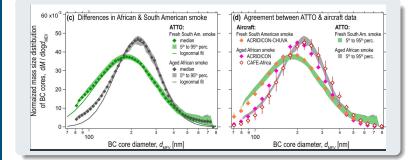
Conclusions

BC measurements

Emissions

Deposition

Transport

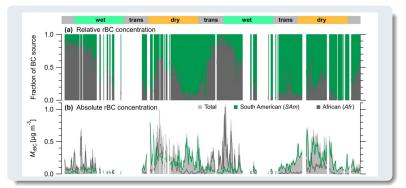

The observations

Comparison with the model

Results

Conclusions

POR CHEMIS

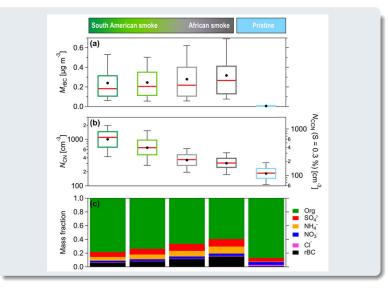

Deposition

The observations

Comparison with the

Results

Conclusions



A. Pozzer 30.08.2023

BC measurements

BC measurements

Depositior

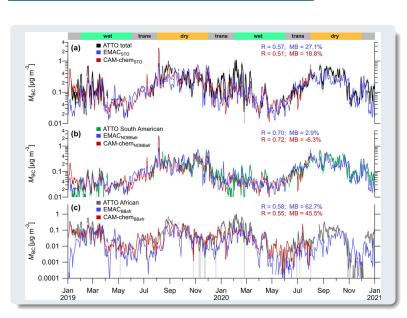
Transport The observations

Comparison with t

model

Emissions

Depositior


Transport

The observations

Comparison with the model

Results

Conclusions

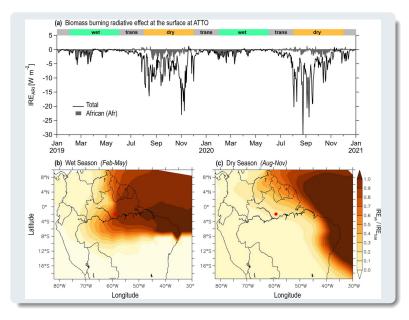
A. Pozzer 30.08.2023

Comparison with the model

Model Results

Emissions

Depositior


Transport

The observations

Comparison with the model

Results

Conclusions

Emissions

Deposition

Transport

The observations

Comparison with the model

Results

Conclusions

Transport

Conclusions:

- transport can move pollutants far away from the source region
- such pollutants can impact significantly the local concentration

See the publication: https://doi.org/10.5194/acp-22-9483-2022

- Introduction
- Emissions
- Deposition
- Transport
- Conclusions

- - Emissions, deposition and transport have direct impact on pollutants' concentration
 - Multiple processes must be considered when simulating chemistry in the atmosphere
 - Numerical model are essential to simulate all process simultaneously

Observations are necessary

Conclusions

- to evaluate the model
- to test the numerical results

- Introduction
- Emissions
- Deposition
- Transport
- Conclusions

Thank you for your attention!

Special thanks to the group at MPIC