
Beehive: A Modular Flexible Network

Stack for Direct Attached Accelerators

Katie Lim, Pratyush Patel, Jacob Nelson, Irene Zhang,
Tom Anderson

Accelerators in the datacenter

● Datacenters increasingly moving computation

into dedicated hardware leading to better

energy efficiency

● Applications:
○ Video encoding: Google

○ ML: Google, Facebook, Microsoft

● Infrastructure
○ Network virtualization: AWS, Microsoft

○ Storage: AWS

Ranganathan, Parthasarathy et al., “Warehouse-scale
video acceleration: co-design and deployment in the
wild”, ASPLOS ‘21

Cloud TPU. https://cloud.google.com/tpu
2

Accelerator Efficiency

● Various research has shown

accelerators on FPGA to have energy

efficiency benefits across a range of

applications

● Efficiency doesn’t account for

surrounding infrastructure required to

integrate these accelerators into a

system

3

Network-attached accelerators

● Some accelerators may be directly

attached to a network, so they can

communicate without CPU intervention

○ Ex: Microsoft, IBM both have deployments of

FPGAs attached to their general purpose

datacenter networks

● Energy efficiency benefits both for

application and for infrastructure

● What should a hardware network stack

look like?

Caulfield, Adrian M. et al., “A cloud-scale
acceleration architecture”, MICRO’16

Abel, Francois. et al., “An FPGA Platform for
Hyperscalers”, HOTI ’17

4

Software network stacks

● Recent work in network stacks (e.g.

Google Snap, eBPF) prioritizes

modularity, customizability

● Variety of protocols that can be

changed
○ e.g. Snap integrates a new transport

protocol

● Custom network functions
○ E.g. load balancing, network virtualization

● Complex interconnections in the stack

● Potentially all layers need control plane

access
5

Example software network stack overview

Beehive

● Our proposal: Beehive, a network-on-chip

(NoC) based network stack

● Each protocol or network functions is a tile.

Tiles communicate via message passing

and can be composed

● Scale up processing capacity by duplicating

tiles within the architecture

● Focus on providing support for both flexible

packet operations and reliable protocols
○ Previous work focuses on one or the other

Proposed design with a mesh

topology

6

Beehive Tile

● Processing logic modules are wrapped in

a tile

● Processing logic can be anything:

protocol, network function, application

logic

● NoC message handling includes

message construction/deconstruction

and network packet level routing

● Router handles NoC message level

routing

7

How do we process a packet?

8

How do we process a packet?

9

1

2 3 4

How do we process a packet?

10

1
234

Prototype & Evaluation

● Prototyped on Xilinx Alveo U200 running at 250 MHz
○ Mesh topology, 512 bit NoC width

○ Protocols: Ethernet, IP, TCP, UDP

○ Network functions: NAT or IP encapsulation

● Testbed
○ Switch: Edgecore Wedge 100BF-32X 100G, jumbo frames enabled

○ 3 CPU clients: 2 have Intel Xeon Gold 6226R CPUs, one has Intel Xeon Gold 5218 CPU. All

have Mellanox ConnectX-5 NICs

● FPGA and CPU clients all connected to the same switch

11

Overhead from message passing/routing

● Compare Beehive versus

a fixed pipeline design

● Fixed pipeline uses same

processing components,

but no NoC infrastructure

● Integrated logs used for

measuring statistics

Beehive

Fixed Pipeline

12

Overhead from message passing/routing

● Fixed pipeline better in

simulation

● NoC has small

overhead

● Beehive slightly better

than fixed pipeline on

FPGA due to jitter and

increased buffering

13

TCP migration experiment

● Migrate established TCP connection between two CPU clients using the

Demikernel TCP stack without restarting the connection.

CPU

Client
1

FPGA

server

CPU

Client
2

“hello”

“hello”
Port:

54321

Phys. IP:

198.0.0.1

phys IP:

198.0.0.11

Flow tuple New remote IP

14

TCP migration experiment

● Migrate established TCP connection between two CPU clients running the

Demikernel TCP stack without restarting the connection

CPU

Client
1

FPGA

server

CPU

Client
2

Migrate

TCP
state phys IP:

198.0.0.11
Port:

54321

Phys. IP:

198.0.0.1

Flow tuple New remote IP

15

TCP migration experiment

● Migrate established TCP connection between two CPU clients running the

Demikernel TCP stack without restarting the connection

CPU

Client
1

FPGA

server

CPU

Client
2

Update

FPGA
server

phys IP:

198.0.0.11

Flow tuple New remote IP

(198.0.0.1, 54321, 198.0.0.7,
65432)

198.0.0.11

Port:

54321

Phys. IP:

198.0.0.1

16

TCP migration experiment

● Migrate established TCP connection between two CPU clients running the

Demikernel TCP stack without restarting the connection

CPU

Client
1

FPGA

server

CPU

Client
2

“hello”

“hello”
Port:

54321

phys IP:

198.0.0.11

Phys. IP:

198.0.0.1

Flow tuple New remote IP

(198.0.0.1, 54321, 198.0.0.7,
65432)

198.0.0.11 17

TCP migration experiment

Requests coming from

first CPU client

18

Migration occurs,

takes ~500 μs

Requests coming from

second CPU client

Ongoing Work

● Internal load balancing across duplicated components to support multiple

instances of tiles

19

● Allows scaling up of processing capacity

● Requires flow-based steering to keep packets in order

Ex: Viewstamped Replication Witness

● Consensus algorithms allow agreement

on an order of operations and are

important for building replicated,

distributed systems

● Each consensus round requires leaders

collect responses from a majority of

witnesses

● Can we accelerate the witnesses in

hardware?

20

Normal operation of the VR protocol

Why witnesses?

● In a typical, only CPU case, one node can be either leader or witness

● What are witnesses responsible for?
○ During typical processing: verifying that proposals carry the correct view number, a valid

operation number

○ During failures: can initiate recovery, but also can just respond appropriately to view change

messages

● Advantageous for hardware:
○ They do not need to execute application logic

○ Low latency good for achieving quick quorums

○ Messages are typically small packets

21

Preliminary Results

● Latency: 64ns per consensus round

● Bandwidth: 15.6 Mrounds/sec, ~2Gbps

● Implemented on Xilinx Alveo U200 with Vivado 2021.2

at 250 MHz

● Utilization promising that we can replicate tile to scale

up processing bandwidth

22

Utilization of 1 VR Witness Tile

LUTs 1918

URAMs 4

Conclusion

● Built Beehive, a NoC-based network stack designed to be modular and

support complex network functionality

● Demonstrated that Beehive has a small overhead on bandwidth (~5%) versus

a fixed pipeline design while enabling complex functionality like TCP

connection migration

● Working on leveraging tile-based design to scale up processing with VR

witness example application

23

