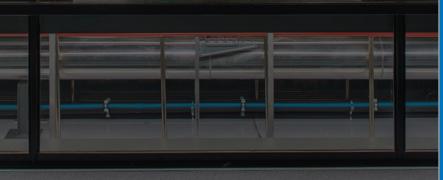


Barcelona Supercomputing Center Centro Nacional de Supercomputación

Convergence of HPC, Big Data, and ML Applications on Containerized Infrastructures

PhD Work & BSC Mobility Program

Contents



1. Introduction

- 2. Performance Analyses of HPC, BD, and ML Applications Using Containers
- 3. Agent-based Autonomic Management and Supervision for ML workflows
- 4. Fine-Grained Scheduling for Containerized HPC Workloads
- 5. Conclusion

Contents

1. Introduction

Context

Increasing usage of HPC, BD and ML in multiple disciplines with distributed heterogeneous computing.

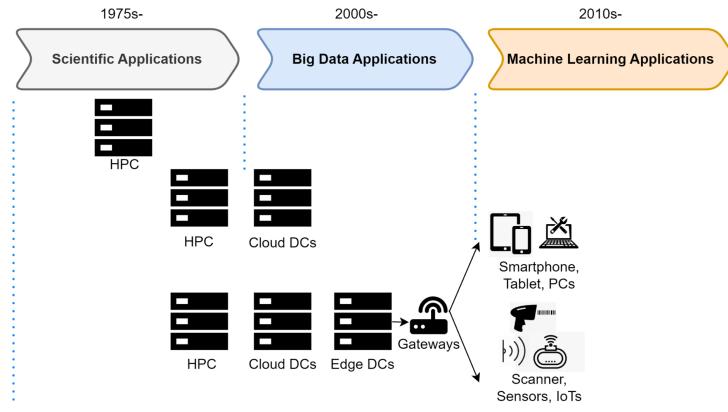


Fig 1. Computing evolving stages over the last three decades.

- **HPC** solve scientific problems using modeling and simulation.
- HPC has evolved into Data Science.
- High Performance Data
 Analysis workloads in the cloud
 has been gaining popularity.
- **ML-enabled** science, engineering, arts, health, and business.
- ML is joining the HPC and BD convergence

https://www.bsc.es/research-and-development/research-areas

Containerization for Convergence

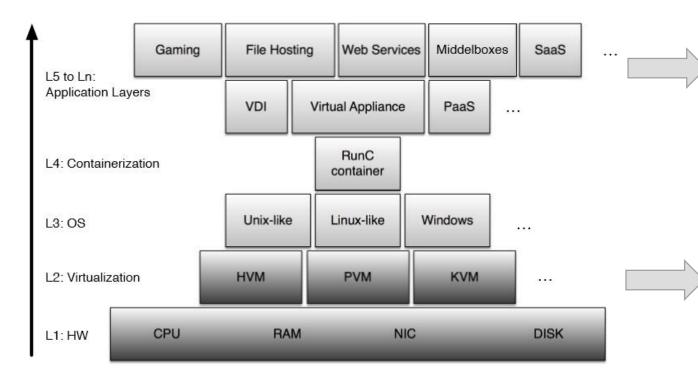


Fig 2. Containerization as the narrow waist of the system software stack

- Portability
- Agility
- Fast and flexible deployment
- Consistent environment
- Transparency
- Isolation
- Low costs
- Keep the performance

Challenges

- Infrastructure layer
 - Feature complete isolation of the applications in a multi-tenant environment
 - Seamlessly and efficiently provide heterogeneous resources (e.g., Infiniband, NUMA, etc.)
 - Allow agile and fine-grain dynamic resource provisioning to orchestrate resource sharing
 - Integrate HPC and Cloud scheduling and resource management techniques, while providing fault tolerance, energy efficiency, and scalability

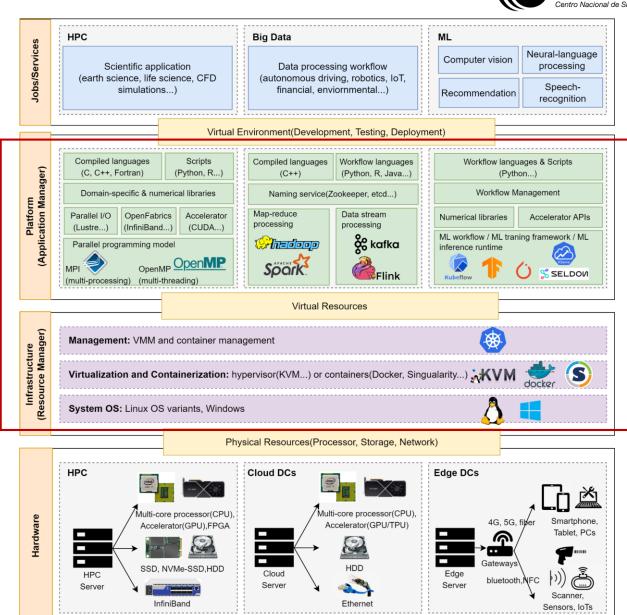
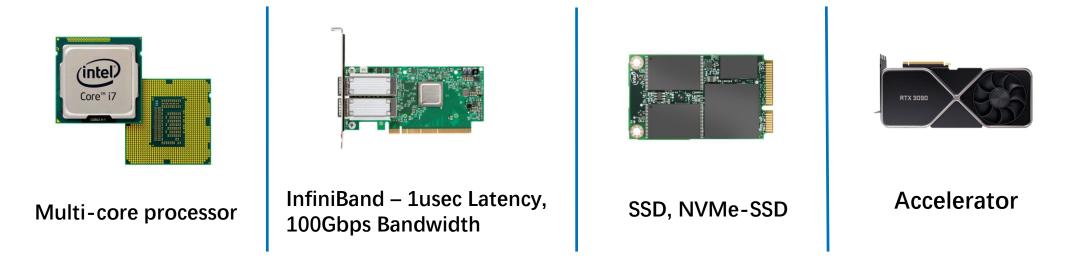


Fig 3. Convergence of HPC, BD and ML on containerized infrastructures

Drivers of Modern HPC Cluster Architectures



- Multi-core processors and Non-uniform memory access (NUMA) memory architecture
- Remote Direct Memory Access (RDMA) enabled networking (InfiniBand)
- Solid State Drive (SSD) and General Parallel File System (GPFS[™])
- Accelerators (NVIDIA GPUs)

Challenges

- Platform layer
 - Fulfill applications requirements of portability and reproducibility by allowing the definition of encapsulated and customized diverse software stacks
 - Enable DevOps to efficient create/terminate/manage those software environments on demand

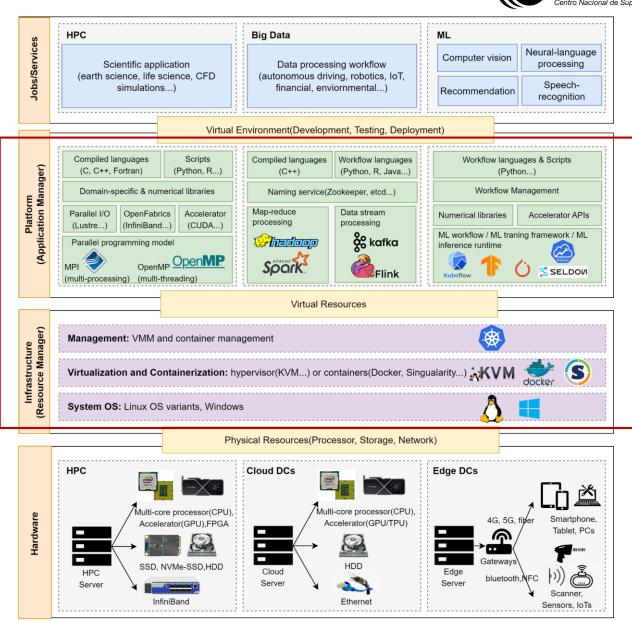


Fig 3. Convergence of HPC, BD and ML on containerized infrastructures

Objectives

How to leverage virtualization/containerization in both the infrastructure layer and the platform layer to support the convergence of a wide range of types of applications while taking advantage of heterogeneous HPC, Cloud, and Edge resources?

- Enable deployments and understand the performance of HPC, BD, and ML workloads using containers.
- Provide an autonomic management platform for containerized HPC, BD, and ML workloads.
- Optimize cluster management and scheduling for containerized HPC, BD, and ML workloads.

Contents

2. Performance Analyses of HPC, BD and ML Applications Using Containers

- Performance Analysis of Multi-container Deployments for HPC Workloads
- Performance Analysis of Multi-container Deployments for Online ML Inference Workloads

Performance Analyses of HPC, BD, and ML Workloads Running on Containers

Containers provide a pool of resources for a group of applications' processes/threads.



Fig 4. Container-based deployment model

- Job (application level diversity)
- Container Pool (container level diversity)
- Host (hardware level diversity)

- [1] **Peini Liu**, and Jordi Guitart. "Performance comparison of multi-container deployment schemes for HPC workloads: an empirical study." The Journal of Supercomputing 77.6 (2021): 6273-6312.
- [2] **Peini Liu**, and Jordi Guitart. "Performance characterization of containerization for HPC workloads on InfiniBand clusters: an empirical study." Cluster Computing 25.2 (2022): 847-868.
- [3] **Peini Liu**, Jordi Guitart and Amir Taherkordi, "Performance Characterization of Multi-container Deployment Schemes for Online Machine Learning Inference", 2023 IEEE 11 Cloud, submitted.

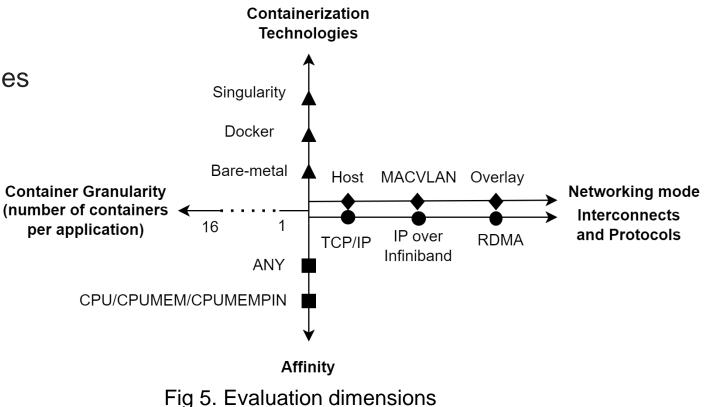
Performance Analysis of Multi-container Deployments for HPC Workloads

Container-level:

- Enable different containerization
- Enable multi-container packing schemes
- Enable setting cpu/memory affinity
- Enable different networking interconnection mode and protocols

Application-level:

- Exactly- and over-subscribed modes Hardware-level:
- InfiniBand, UMA/NUMA architecture



[1] **Peini Liu**, and Jordi Guitart. "Performance comparison of multi-container deployment schemes for HPC workloads: an empirical study." The Journal of Supercomputing 77.6 (2021): 6273-6312.

[2] **Peini Liu**, and Jordi Guitart. "Performance characterization of containerization for HPC workloads on InfiniBand clusters: an empirical study." Cluster Computing 25.2 (2022): 847-868.

Performance Analysis of Multi-container Deployments for HPC Workloads

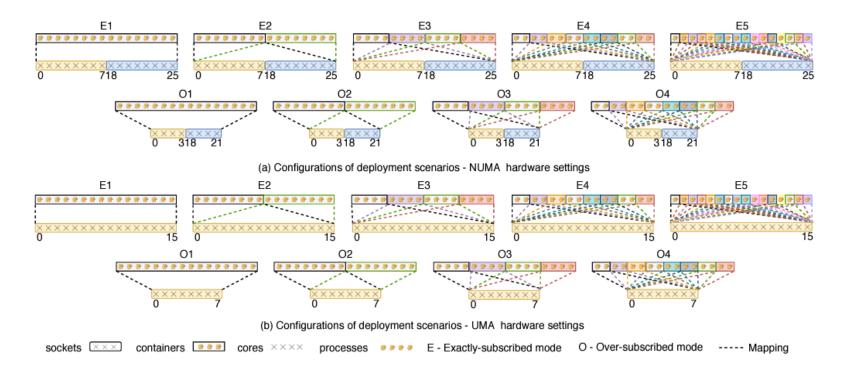


Fig 6. Multi-container deployment scenarios

Multi-container deployments:

- **Application-level**: Exactlysubscribed mode (E1-E5) and Over-subscribed mode (O1-O4)
- Hardware-level: UMA and NUMA platforms
- **Container-level**: Granularity
 - E1-E5, O1-O4, increase the number of containers, decrease the number of processes per container

Performance Analysis of Multi-container Deployments for HPC Workloads

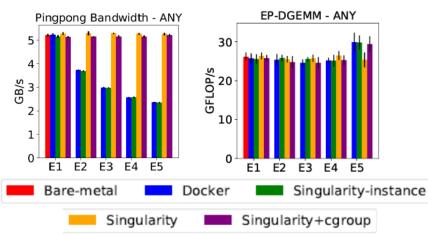


Fig 7. Impact of container granularity in PingPong Bandwidth and EP-DGEMM performance on NUMA hardware platform setting

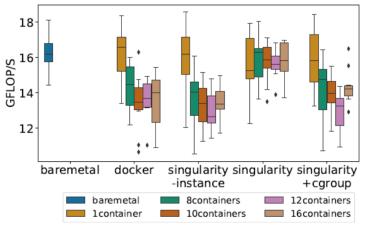
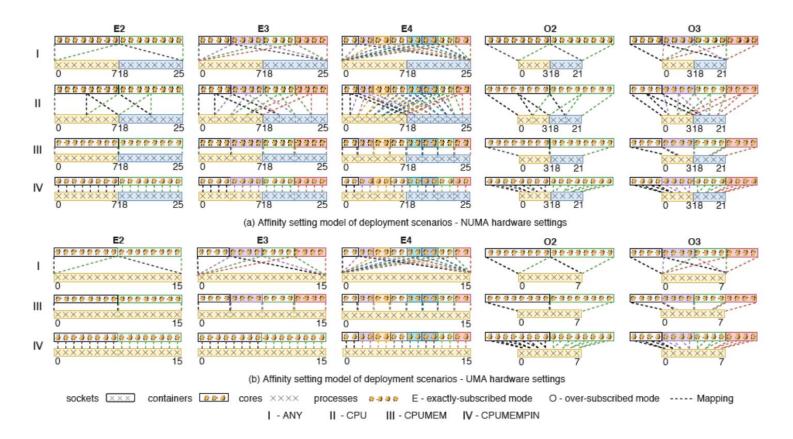


Fig 8. Performance comparison of EP-DGEMM with different number of containers

Summary:

- Singularity has close to bare-metal performance.
- For Docker and Singularity-instance, multi-container deployments incurs performance degradation for **MPI** communication workloads.
- Fine-grained multi-container deployments of MPI throughput workloads show a performance improvement.
- Some performance degradation on oversubscribed mode is due to the scheduling of cgroups by Linux CFS.

Performance Analysis of Multi-container Deployments With Affinity for HPC Workloads



Multi-container deployments with affinity:

- Application-level: Exactlysubscribed mode (E2-E4) and Over-subscribed mode (O2-O3)
- Hardware-level: UMA and NUMA platforms
- **Container-level**: Granularity and Affinity
 - E2-E4, O2-O3, increase the number of containers, decrease the number of processes per container
 - CPU/CPUMEM/CPUMEMPIN
 affinity settings

Fig 9. Multi-container deployment scenarios with affinity

[1] **Peini Liu**, and Jordi Guitart. "Performance comparison of multi-container deployment schemes for HPC workloads: an empirical study." The Journal of Supercomputing 77.6 (2021): 6273-6312.

Performance Analysis of Multi-container Deployments With Affinity for HPC Workloads

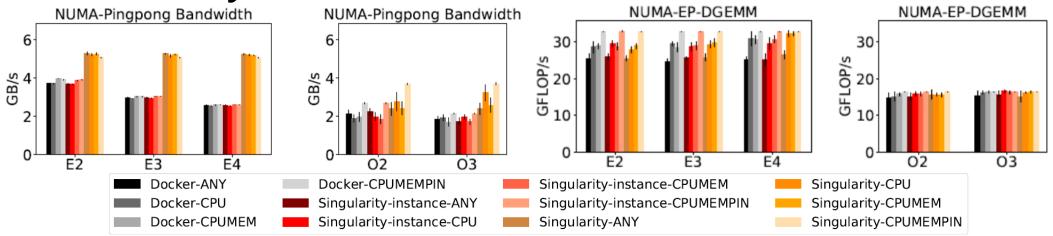


Fig 10. Impact of container granularity with affinity in PingPong Bandwidth and EP-DGEMM performance on NUMA hardware platform setting

Summary:

- Multi-container deployments with affinity **cannot prevent** the performance degradation of Docker and Singularity-instance with MPI communication workloads.
- Finer-grained container granularity can improve the performance on multi-container deployments with affinity depending on the CPU and memory usage characteristics.
- On over-subscribed mode, CPU affinity is able to overcome the CFS load imbalance problem causing performance degradation.

35 30

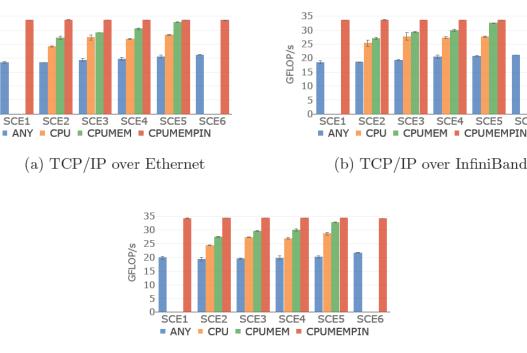
25 GFLOP/s

20

15

10

Performance Analysis of Multi-container Deployments for HPC Workloads on InfiniBand Clusters



(c) RDMA over InfiniBand

Fig 12. Performance of EP-DGEMM using multi-container deployments scenarios with different network fabrics when running on a testbed with 7 nodes (1 master + 6 workers)

Summary:

- Underlay container networking approaches achieve comparable performance to bare-metal experiments. Overlay networking brings explicit latency increase and bandwidth degradation.
- Fine-grain multi-container deployments could increase the network latency, but can alleviate the latency and contention of memory accesses.
- Setting affinity cannot avoid the overhead incurred by overlay networking, but can help with computation and memory allocation.

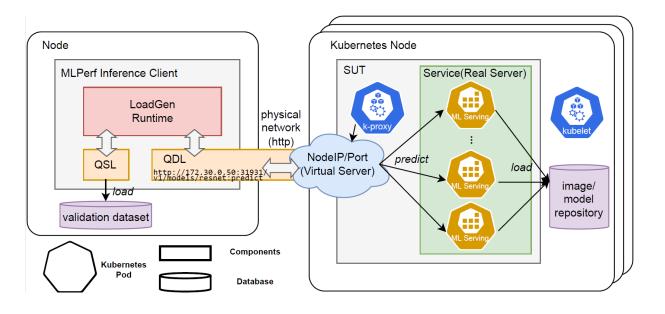


Fig 6. Evaluation system architecture of multi-container deployment schemes for ML model inference

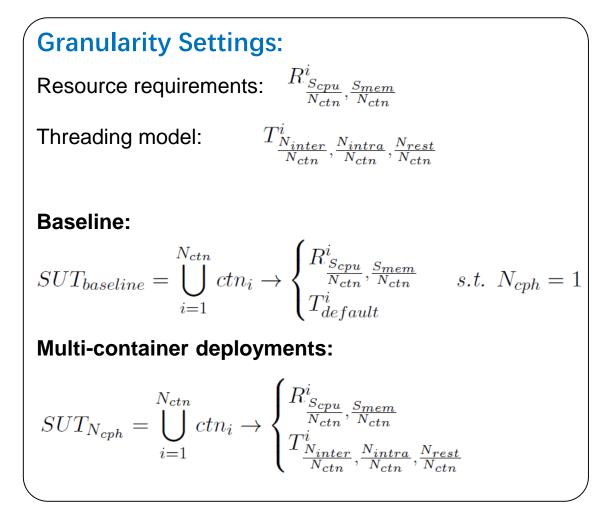
Container-level:

- Enable multi-container packing schemes
- Enable setting cpu/memory affinity **Application-level:**
- Threads model (inter-op, intra-op)
- User Scenarios (SingleStream, MultiStream, Server, Offline)

Hardware-level:

NUMA architecture

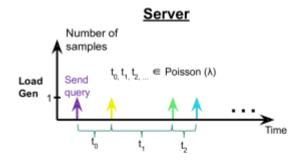
[3] **Peini Liu**, Jordi Guitart and Amir Taherkordi, "Performance Characterization of Multi-container Deployment Schemes for Online Machine Learning Inference", 2023 *IEEE Cloud*, submitted.

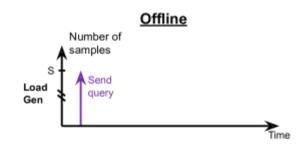


Affinity Settings:
Resource mapping: $Map_{h,i} \rightarrow \begin{cases} CPU_{h,s_i,[x_i,y_i]} \\ MEM_{h,s_i} \end{cases}$
ANY:
$Map_{h,i} \rightarrow \begin{cases} \bigcup_{s=0}^{N_{socket}-1} CPU_{h,s,[s \times P, s \times P + \frac{N_{cpu} \times N_{cph}}{N_{socket}} - 1]} \\ \bigcup_{s=0}^{N_{socket}-1} MEM_{h,s} \end{cases}$
CPUMEM: $s_i = \lceil \frac{i}{N_{cps}} \rceil - 1$
$x_i = s_i \times P + N_{cpu} \times ((i-1) - s_i \times N_{cps})$
$y_i = s_i \times P + N_{cpu} \times (i - s_i \times N_{cps}) - 1$

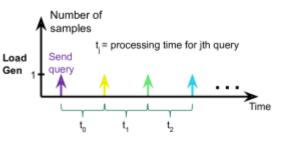
Client Settings:

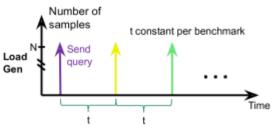
Scenarios	Query Generation	Metric	Sample per Query	Parameters
Single-Stream (SS)	Sequential	90th-percentile Latency	1	min_query_count=1664
Multi-Stream (MS)	Arrival Interval With Dropping	Number of Streams Subject to Latency Bound	Ν	min_query_count=2000 target_qps=32 max_async_queries=250 target_latency=8s
Server (S)	Poisson Distribution	Queries per Second Subject to Latency Bound	1	min_query_count=1280 target_qps=200 target_latency=20s
Offline (O)	Batch	Throughput	≥ 24576	min_query_count=3276 target_qps=200 max_batchsize=1,2,4,8





Single-Stream





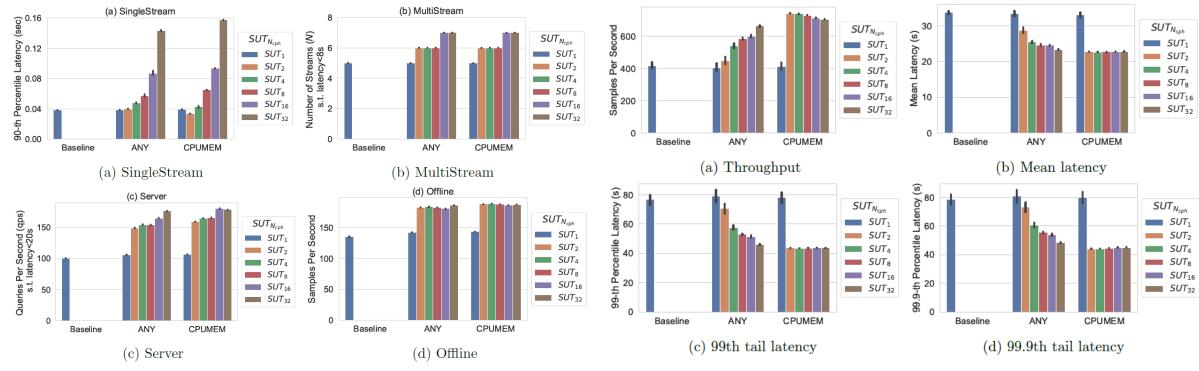


Fig 7. Impact of container granularity and affinity in SUT performance (Single-node left, Four-node right)

Conclusion: Multi-container deployments show significant **performance improvements up to 69% and 87%** regarding the single-container deployment on single-node and four-node clusters, respectively. These deployments with explicit CPU/memory affinity settings can **sum up to 9% and 68%** to the granularity gains on single-node and four-node clusters, respectively.

Research Stay Report

Networks and Distributed Systems Group at University of Oslo (UiO), Norway. [Host: Amir Taherkordi]

- WD1: present our current Ph.D. work regarding the multi-container deployment shemes and fine-grained scheduling policies for HPC applications
- WD2: collaborate in a conference paper regarding performance analyses of multi-container deployment schemes for online ML inference
- WD3: study on the edge platforms at UiO

Acknowledgment: Many thanks to Amir and Jordi for providing me the chance to this research stay. Especially thank the BSC mobility program, FI grant 2020 FI-B 00257, and Amir for funding this trip.

Contents

3. Agent-based Autonomic Management and Supervision for ML Workflows

- Multi-layered Architecture for Autonomic Management and Supervision
- Agents for Autonomic Management and Supervision
- Case Study and Experimental Analysis

Multi-layer Architecture for Autonomic Management and Supervision for ML Workflows

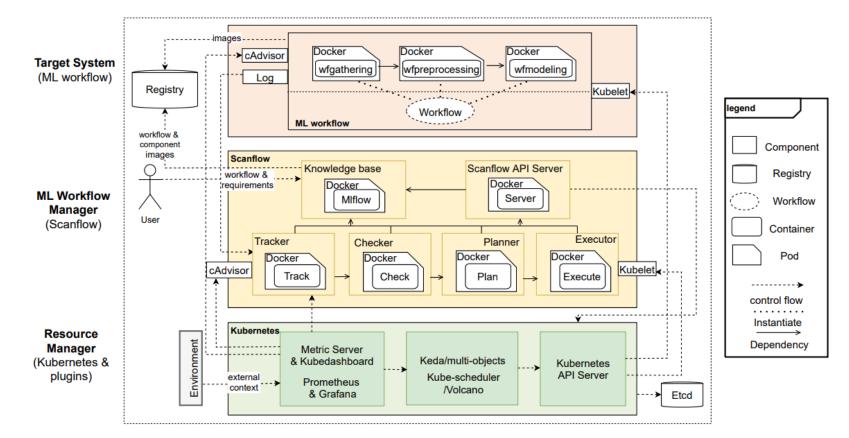
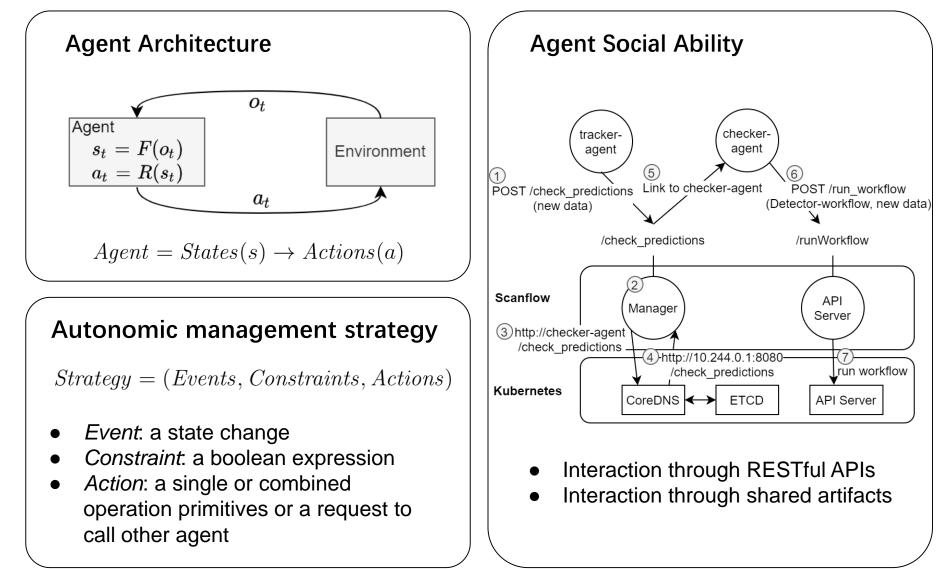


Fig 8. Scanflow-K8s: A practical platform for autonomic management and supervision for ML workflows

[4] **Peini Liu**, Gusseppe Bravo-Rocca, Jordi Guitart, Ajay Dholakia, David Ellison, and Miroslav Hodak, Scanflow-K8s: Agent-based Framework for Autonomic Management and Supervision of ML Workflows in Kubernetes Clusters", *2022 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid)*, May 2022, Taormina, Italy, pp. 376-385, DOI: 10.1109/CCGrid54584.2022.00047

Agents for Autonomic ML Workflows



Case Study And Experimental Analysis

MNIST Classification[1]

Objectives:

- How the various teams will use Scanflow-K8s in the different phases to build and deploy their workflows.
- How agents manage and supervise the ML workflows at the application layer. (i.e., to detect and handle drift anomalies).

MLPerf Inference Benchmark[2]

Objectives:

 How Scanflow-K8s can deal with context changes and nonfunctional requirements by taking advantage of the resource manager and also the collaboration between application and infrastructure layers.

Scanflow Tutorial - MNIST classification: <u>https://github.com/bsc-scanflow/scanflow/tree/main/tutorials/mnist</u> Scanflow Tutorial - MLPerf inference <u>https://github.com/bsc-scanflow/scanflow/tree/main/tutorials/mlperf</u>

AI workloads/workflows running on containers

Scanflow-K8s for MNIST

https://github.com/bsc-scanflow/scanflow

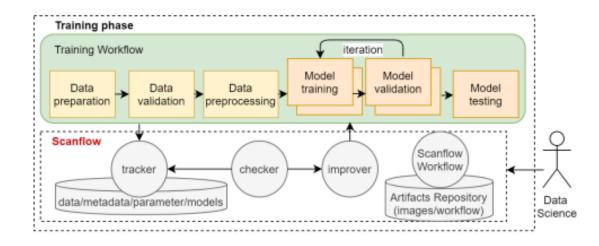


Fig 9. Data Science team works at training phase

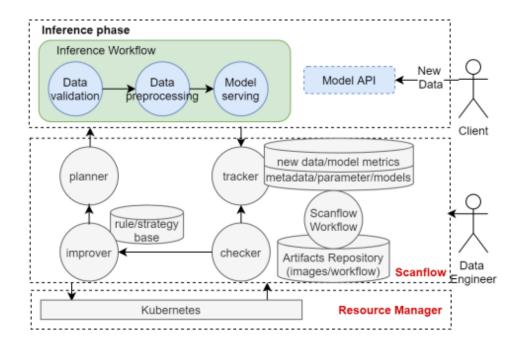
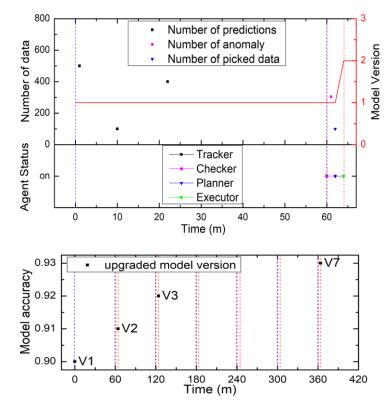


Fig 10. Data Engineer team works at inference phase

[5] Peini Liu, Gusseppe Bravo-Rocca, Jordi Guitart, Ajay Dholakia, David Ellison, and Miroslav Hodak, Scanflow: an end-to-end agent-based autonomic ML workflow manager for clusters, *In Proceedings of the 22nd International Middleware Conference: Demos and Posters*, December 2021, Virtual Event, Canada. pp. 1-2, DOJ: 10.1145/3491086.3492468

MNIST Classification

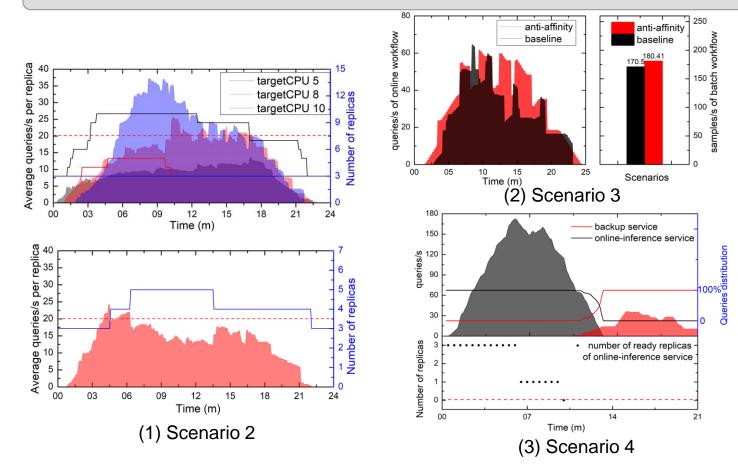
S1: agents manage and supervise the ML workflows at the **application layer**. (i.e., to detect and handle drift anomalies).



- **Tracker:** Track predictions
- Checker:
 - Drift Detector Checker Convolutional Deep AutoEncoder + Critical Point Selector
- Planner:
 - Model retraining Planner
- Executor: Model update

MLPerf Benchmarks

S2-S4: Scanflow-K8s can deal with context changes and non-functional requirements by **taking** advantage of the resource manager and also the collaboration between application and infrastructure layers.



- S2: Agent-tuned auto-scaling according to an application-level non-functional QoS requirement provided by the end-user performs better
- S3: Agent tunes the containerlevel resource and affinity configuration to optimize performance according to workflow type and resource availability
- S4: Agent deals with service unavailability by redirecting the traffic to a backup service defined at the application level.

Fig 12. Multi-layer autonomy results (Scenario 2-4)

Conclusion

→ We proposed Scanflow-K8s platform to enable the autonomy to manage and supervise ML workflows.

Conclusions:

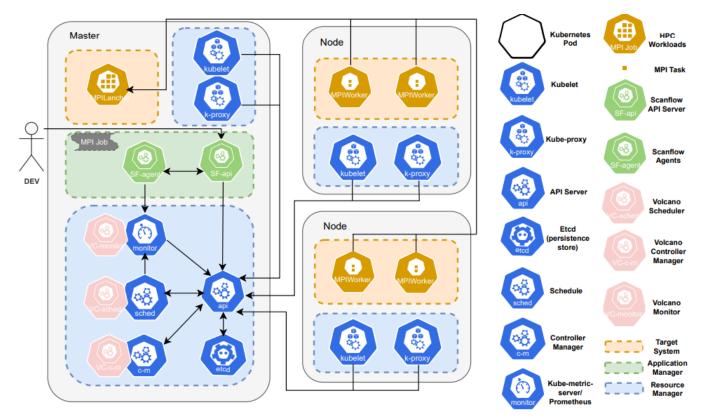
- Different teams could leverage Scanflow-K8s to manage ML workflows at different phases (ML training, ML inference).
- Multiple agents could collaborate to debug a drift anomaly problem, retrain, and upgrade a new model.
- Agents could perform and take actions to keep the performance and availability of ML workflows in this multi-layer controlled autonomic architecture.

Contents

4. Fine-Grained Scheduling for Containerized HPC Workloads

- System Architecture
- Fine-Grained Scheduling
 - Application-layer Granularity Selection
 - Infrastructure-layer Task-group Scheduling
- Evaluation

System Architecture



Application layer

MPI workload model (to support the specification of multi-container deployments)

Infrastructure layer

MPI workload controller (to

allocate processes to each container and define the resource specification for each container)

MPI workload allocation (to schedule and start containers on nodes)

Fig 13. Scanflow(MPI)-K8s: A practical platform for managing HPC workflows

[6] **Peini Liu** and Jordi Guitart, Fine-Grained Scheduling for Containerized HPC Workloads in Kubernetes Clusters, *The 2022 High Performance Computing and* 32 *Communications (HPCC-2022),* December 2022, Chengdu, China, Preprint: arXiv.2211.11487, accepted.

Fine-Grained Scheduling

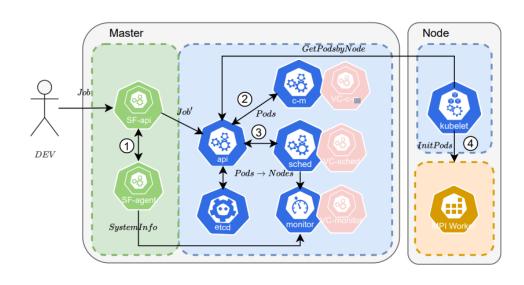
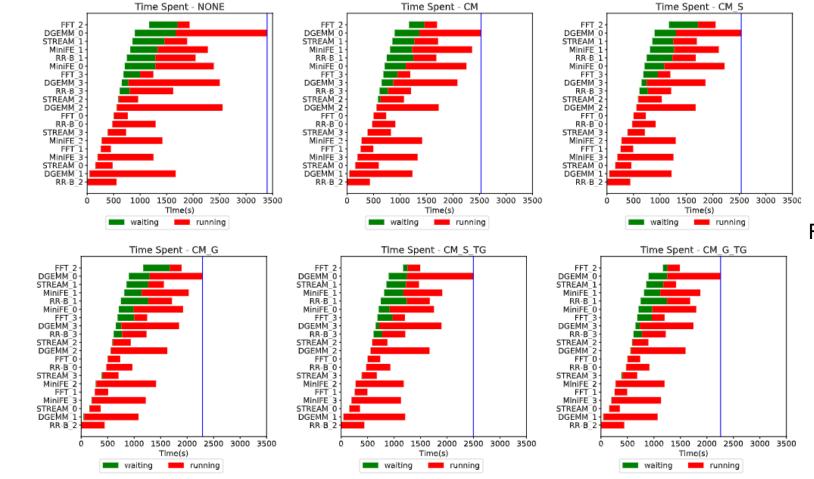


Fig 14. Scheduling steps for HPC workloads deployment

- Application-layer Granularity Selection
 Step 1: Scanflow-planner agent: Granularity selection for
 HPC workloads (decide number of containers, resource for
 each container by considering the application profile)
- Infrastructure-layer Task-group Scheduling
 Step 2: Volcano-controller manager: Dynamic MPI-aware

job controller (initialize pod specification with allocated processes to containers and calculated resources) **Step 3: Volcano-scheduler:** TaskGroup (*TG*) scheduling (consider evenly distribute MPI workers to nodes) **Step 4: Kubelet affinity setting:** *None* by default or enable *CM* (CPU/Memory affinity)

Fine-Grained Scheduling Results



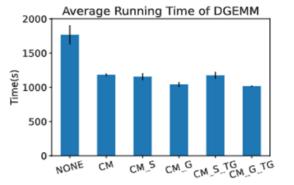


Fig 16. Average job running time of DGEMM

Conclusion: Fine-grained scheduling can reduce the response time of HPC workloads up to 35%, as well as improve the makespan up to 34%.

Fig 15. Makespan of different scheduling scenario: 20 jobs with different types

Conclusion

→ We proposed fine-grained scheduling for allocating containerized HPC workloads in a Scanflow(MPI)-K8s cluster.

Conclusions:

- We extended the Scanflow-K8s platform to support HPC MPI workloads.
- We created new policies in both the application-layer planner-agent (e.g., granularity selection) and the infrastructure-layer Volcano controller and scheduler (e.g., adding an MPI-aware controller and a task-group scheduling plugin) to improve the two-layer scheduling.
- Our proposed fine-grained scheduling can reduce the response time of HPC workloads up to 35%, and improve the makespan up to 34%.

Contents

5. Conclusion and Future Work

Conclusion and Future Work

Conclusion

- Enabled deployments of HPC, BD, and AI workloads using containers.
- Analyzed the performance of HPC, BD, and AI workloads running on containers, considering diversities from application-level, container-level and hardware-level.
- Established an agent-based autonomic management platform for containerized workloads.
- Optimized scheduling in containerization platform for HPC workloads and provided autonomic management for ML workflows.

Future Work

- Optimize scheduling in containerization platform for AI workloads (Fine-grained scheduling, affinity, mixed GPU share/number allocation).
- Consider more diverse hardware such as IoT devices, performance under QoS and energy constraints.

Publications

Publications included in this talk

1. Journals:

- Peini Liu and Jordi Guitart, Performance comparison of multi-container deployment schemes for HPC workloads: an empirical study, *The Journal of Supercomputing*, vol. 77, no. 6, pp. 6273-6312, June 2021. DOI: 10.1007/s11227-020-03518-1.
- Peini Liu and Jordi Guitart, Performance characterization of containerization for HPC workloads on InfiniBand clusters: an empirical study, *Cluster Computing*, vol. 25, no. 2, pp. 847-868, April 2022. DOI: 10.1007/s10586-021-03460-8.

2. Conferences:

- Peini Liu, Gusseppe Bravo-Rocca, Jordi Guitart, Ajay Dholakia, David Ellison, and Miroslav Hodak, Scanflow: an end-to-end agent-based autonomic ML workflow manager for clusters, *In Proceedings of the 22nd International Middleware Conference: Demos and Posters*, December 2021, Virtual Event, Canada. pp. 1-2, DOI: 10.1145/3491086.3492468
- Peini Liu, Gusseppe Bravo-Rocca, Jordi Guitart, Ajay Dholakia, David Ellison, and Miroslav Hodak, Scanflow-K8s: Agent-based Framework for Autonomic Management and Supervision of ML Workflows in Kubernetes Clusters", 2022 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid), May 2022, Taormina, Italy, pp. 376-385, DOI: 10.1109/CCGrid54584.2022.00047
- Peini Liu and Jordi Guitart, Fine-Grained Scheduling for Containerized HPC Workloads in Kubernetes Clusters, *The 2022 High Performance Computing and Communications (HPCC-2022)*, December 2022, Chengdu, China, Preprint: arXiv.2211.11487, accepted.
- **Peini Liu**, Jordi Guitart and Amir Taherkordi, Performance Characterization of Multi-container Deployment Schemes for Online Machine Learning Inference on Kubernetes Clusters, 2023 IEEE Cloud, submitted.

Thanks!

Universitat Politecnica de Catalunya (UPC)

Barcelona Supercomputing Center (BSC)

Lenovo

Lenovo – Infrastructure Solution Team