
1

PhD Work & BSC Mobility Program

Convergence of HPC, Big Data, and ML
Applications on Containerized Infrastructures

Author: Peini Liu

Advisor: Jordi Guitart

Contents

1. Introduction

2. Performance Analyses of HPC, BD, and ML

Applications Using Containers

3. Agent-based Autonomic Management and

Supervision for ML workflows

4. Fine-Grained Scheduling for Containerized

HPC Workloads

5. Conclusion

Contents 1. Introduction

4

Context

Fig 1. Computing evolving stages over the last three decades.

Increasing usage of HPC, BD and ML in multiple disciplines with distributed

heterogeneous computing.

• HPC solve scientific problems

using modeling and simulation.

• HPC has evolved into Data

Science.

• High Performance Data

Analysis workloads in the cloud

has been gaining popularity.

• ML-enabled science, engineering,

arts, health, and business.

• ML is joining the HPC and BD

convergence

https://www.bsc.es/research-and-development/research-areas

5

Containerization for Convergence

• Portability

• Agility

• Fast and flexible deployment

• Consistent environment

Fig 2. Containerization as the narrow waist of the system software stack

• Transparency

• Isolation

• Low costs

• Keep the performance

https://www.etp4hpc.eu/

6

Challenges

Fig 3. Convergence of HPC, BD and ML on containerized infrastructures

• Infrastructure layer

• Feature complete isolation of the

applications in a multi-tenant

environment

• Seamlessly and efficiently provide

heterogeneous resources (e.g.,

Infiniband, NUMA, etc.)

• Allow agile and fine-grain dynamic

resource provisioning to orchestrate

resource sharing

• Integrate HPC and Cloud scheduling

and resource management

techniques, while providing fault

tolerance, energy efficiency, and

scalability

• Multi-core processors and Non-uniform memory access (NUMA) memory architecture

• Remote Direct Memory Access (RDMA) enabled networking (InfiniBand)

• Solid State Drive (SSD) and General Parallel File System (GPFS™)

• Accelerators (NVIDIA GPUs)

7

Drivers of Modern HPC Cluster Architectures

Multi-core processor
InfiniBand – 1usec Latency,
100Gbps Bandwidth

SSD, NVMe-SSD Accelerator

8

Challenges

Fig 3. Convergence of HPC, BD and ML on containerized infrastructures

• Platform layer

• Fulfill applications requirements

of portability and reproducibility by

allowing the definition of

encapsulated and customized

diverse software stacks

• Enable DevOps to efficient

create/terminate/manage those

software environments on demand

• Enable deployments and understand the performance of HPC, BD, and

ML workloads using containers.

• Provide an autonomic management platform for containerized HPC, BD,

and ML workloads.

• Optimize cluster management and scheduling for containerized HPC, BD,

and ML workloads.

9

Objectives

How to leverage virtualization/containerization in both the infrastructure layer

and the platform layer to support the convergence of a wide range of types of

applications while taking advantage of heterogeneous HPC, Cloud, and Edge

resources?

Contents

2. Performance Analyses of HPC, BD and ML

Applications Using Containers
• Performance Analysis of Multi-container

Deployments for HPC Workloads

• Performance Analysis of Multi-container
Deployments for Online ML Inference

Workloads

11

Performance Analyses of HPC, BD, and ML Workloads
Running on Containers

• Job (application level diversity)
• Container Pool (container level diversity)
• Host (hardware level diversity)

Fig 4. Container-based deployment model

Containers provide a pool of resources for a group of applications’

processes/threads.

[1] Peini Liu, and Jordi Guitart. "Performance comparison of multi-container deployment schemes for HPC workloads: an empirical study." The Journal of Supercomputing 77.6

(2021): 6273-6312.

[2] Peini Liu, and Jordi Guitart. "Performance characterization of containerization for HPC workloads on InfiniBand clusters: an empirical study." Cluster Computing 25.2

(2022): 847-868.
[3] Peini Liu, Jordi Guitart and Amir Taherkordi, “Performance Characterization of Multi-container Deployment Schemes for Online Machine Learning Inference”, 2023 IEEE

Cloud, submitted.

12

Performance Analysis of Multi-container Deployments
for HPC Workloads

[1] Peini Liu, and Jordi Guitart. "Performance comparison of multi-container deployment schemes for HPC workloads: an empirical study." The Journal of Supercomputing 77.6

(2021): 6273-6312.

[2] Peini Liu, and Jordi Guitart. "Performance characterization of containerization for HPC workloads on InfiniBand clusters: an empirical study." Cluster Computing 25.2

(2022): 847-868.

Container-level:

• Enable different containerization

• Enable multi-container packing schemes

• Enable setting cpu/memory affinity

• Enable different networking

interconnection mode and protocols

Application-level:

• Exactly- and over-subscribed modes

Hardware-level:

• InfiniBand, UMA/NUMA architecture

Fig 5. Evaluation dimensions

13

Performance Analysis of Multi-container Deployments
for HPC Workloads

Fig 6. Multi-container deployment scenarios

Multi-container deployments：

• Application-level: Exactly-
subscribed mode (E1-E5) and
Over-subscribed mode (O1-O4)

• Hardware-level: UMA and
NUMA platforms

• Container-level: Granularity

• E1-E5, O1-O4, increase the
number of containers, decrease
the number of processes per
container

[1] Peini Liu, and Jordi Guitart. "Performance comparison of multi-container deployment schemes for HPC workloads: an empirical study." The Journal of Supercomputing 77.6

(2021): 6273-6312.

Summary：

• Singularity has close to bare-metal
performance.

• For Docker and Singularity-instance,
multi-container deployments incurs
performance degradation for MPI
communication workloads.

• Fine-grained multi-container
deployments of MPI throughput
workloads show a performance
improvement.

• Some performance degradation on over-
subscribed mode is due to the
scheduling of cgroups by Linux CFS.

14

Performance Analysis of Multi-container Deployments
for HPC Workloads

Fig 7. Impact of container granularity in PingPong Bandwidth and

EP-DGEMM performance on NUMA hardware platform setting

Fig 8. Performance comparison of EP-DGEMM with different

number of containers

15

Multi-container deployments
with affinity：

• Application-level: Exactly-
subscribed mode (E2-E4) and
Over-subscribed mode (O2-O3)

• Hardware-level: UMA and
NUMA platforms

• Container-level: Granularity and
Affinity

• E2-E4, O2-O3, increase the
number of containers, decrease
the number of processes per
container

• CPU/CPUMEM/CPUMEMPIN
affinity settings

Fig 9. Multi-container deployment scenarios with affinity

Performance Analysis of Multi-container Deployments
With Affinity for HPC Workloads

[1] Peini Liu, and Jordi Guitart. "Performance comparison of multi-container deployment schemes for HPC workloads: an empirical study." The Journal of Supercomputing 77.6

(2021): 6273-6312.

16

Performance Analysis of Multi-container Deployments
With Affinity for HPC Workloads

Summary：

• Multi-container deployments with affinity cannot prevent the performance degradation of Docker
and Singularity-instance with MPI communication workloads.

• Finer-grained container granularity can improve the performance on multi-container deployments
with affinity depending on the CPU and memory usage characteristics.

• On over-subscribed mode, CPU affinity is able to overcome the CFS load imbalance problem
causing performance degradation.

16

Fig 10. Impact of container granularity with affinity in PingPong Bandwidth and EP-DGEMM

performance on NUMA hardware platform setting

17

Performance Analysis of Multi-container Deployments
for HPC Workloads on InfiniBand Clusters

Summary：
• Underlay container networking

approaches achieve comparable

performance to bare-metal experiments.

Overlay networking brings explicit latency

increase and bandwidth degradation.

• Fine-grain multi-container deployments

could increase the network latency, but

can alleviate the latency and contention of

memory accesses.

• Setting affinity cannot avoid the overhead

incurred by overlay networking, but can

help with computation and memory

allocation.Fig 12. Performance of EP-DGEMM using multi-container

deployments scenarios with different network fabrics when

running on a testbed with 7 nodes (1 master + 6 workers)

18

Performance Analysis of Multi-container Deployments
for Online ML Inference Workloads

Fig 6. Evaluation system architecture of multi-container

deployment schemes for ML model inference

[3] Peini Liu, Jordi Guitart and Amir Taherkordi, “Performance Characterization of Multi-container Deployment Schemes for Online Machine Learning Inference”, 2023

IEEE Cloud, submitted.

Container-level:

• Enable multi-container packing schemes

• Enable setting cpu/memory affinity

Application-level:

• Threads model (inter-op, intra-op)

• User Scenarios (SingleStream,

MultiStream, Server, Offline)

Hardware-level:

• NUMA architecture

19

Granularity Settings: Affinity Settings:

Resource requirements:

Threading model:

Baseline:

Multi-container deployments:

Resource mapping:

ANY:

CPUMEM:

Performance Analysis of Multi-container Deployments
for Online ML Inference Workloads

20

Client Settings:

Performance Analysis of Multi-container Deployments
for Online ML Inference Workloads

21

Conclusion：Multi-container deployments show significant performance improvements up to 69% and

87% regarding the single-container deployment on single-node and four-node clusters, respectively. These

deployments with explicit CPU/memory affinity settings can sum up to 9% and 68% to the granularity gains

on single-node and four-node clusters, respectively.

Performance Analysis of Multi-container Deployments
for Online ML Inference Workloads

Fig 7. Impact of container granularity and affinity in SUT performance (Single-node left, Four-node right)

22

Research Stay Report

Networks and Distributed Systems Group at University of Oslo

(UiO), Norway. [Host: Amir Taherkordi]

• WD1: present our current Ph.D. work regarding the

multi-container deployment shemes and fine-grained

scheduling policies for HPC applications

• WD2: collaborate in a conference paper regarding

performance analyses of multi-container deployment

schemes for online ML inference

• WD3: study on the edge platforms at UiO

Acknowledgment: Many thanks to Amir and Jordi for
providing me the chance to this research stay. Especially
thank the BSC mobility program, FI grant 2020 FI-B 00257,
and Amir for funding this trip.

Contents

3. Agent-based Autonomic Management and

Supervision for ML Workflows
• Multi-layered Architecture for Autonomic

Management and Supervision

• Agents for Autonomic Management and
Supervision

• Case Study and Experimental Analysis

24

Multi-layer Architecture for Autonomic Management and
Supervision for ML Workflows

Fig 8. Scanflow-K8s: A practical platform for autonomic management and supervision for ML workflows

[4] Peini Liu, Gusseppe Bravo-Rocca, Jordi Guitart, Ajay Dholakia, David Ellison, and Miroslav Hodak, Scanflow-K8s: Agent-based Framework for Autonomic Management and

Supervision of ML Workflows in Kubernetes Clusters'', 2022 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid), May 2022, Taormina,

Italy, pp. 376-385, DOI: 10.1109/CCGrid54584.2022.00047

25

Agents for Autonomic ML Workflows

Agent Architecture Agent Social Ability

Autonomic management strategy

● Event: a state change

● Constraint: a boolean expression

● Action: a single or combined

operation primitives or a request to

call other agent

● Interaction through RESTful APIs

● Interaction through shared artifacts

26

Case Study And Experimental Analysis

MNIST Classification[1] MLPerf Inference Benchmark[2]

Scanflow Tutorial - MNIST classification: https://github.com/bsc-scanflow/scanflow/tree/main/tutorials/mnist
Scanflow Tutorial - MLPerf inference https://github.com/bsc-scanflow/scanflow/tree/main/tutorials/mlperf

Objectives:

• How the various teams will

use Scanflow-K8s in the

different phases to build and

deploy their workflows.

• How agents manage and

supervise the ML workflows at

the application layer. (i.e., to

detect and handle drift

anomalies).

Objectives:

• How Scanflow-K8s can deal

with context changes and non-

functional requirements by

taking advantage of the

resource manager and also

the collaboration between

application and

infrastructure layers.

https://github.com/bsc-scanflow/scanflow/tree/main/tutorials/mnist
https://github.com/bsc-scanflow/scanflow/tree/main/tutorials/mlperf

• Scanflow-K8s for MNIST

27

AI workloads/workflows running on containers

[5] Peini Liu, Gusseppe Bravo-Rocca, Jordi Guitart, Ajay Dholakia, David Ellison, and Miroslav Hodak, Scanflow: an end-to-end agent-based autonomic ML workflow

manager for clusters, In Proceedings of the 22nd International Middleware Conference: Demos and Posters, December 2021, Virtual Event, Canada. pp. 1-2, DOI:

10.1145/3491086.3492468

https://github.com/bsc-scanflow/scanflow

Fig 9. Data Science team works at training phase
Fig 10. Data Engineer team works at inference phase

S1: agents manage and supervise the ML workflows at the application layer. (i.e., to detect and
handle drift anomalies).

28

MNIST Classification

• Tracker: Track predictions

• Checker:

• Drift Detector Checker - Convolutional Deep

AutoEncoder + Critical Point Selector

• Planner:

• Model retraining Planner

• Executor: Model update

Fig 11. Application-layer autonomy results (model drift detection)

29

MLPerf Benchmarks

• S2: Agent-tuned auto-scaling
according to an application-level
non-functional QoS requirement
provided by the end-user performs
better

• S3: Agent tunes the container-
level resource and affinity
configuration to optimize
performance according to workflow
type and resource availability

• S4: Agent deals with service
unavailability by redirecting the
traffic to a backup service defined
at the application level.

Fig 12. Multi-layer autonomy results (Scenario 2-4)

S2-S4: Scanflow-K8s can deal with context changes and non-functional requirements by taking
advantage of the resource manager and also the collaboration between application and
infrastructure layers.

(1) Scenario 2

(2) Scenario 3

(3) Scenario 4

30

Conclusion

➔ We proposed Scanflow-K8s platform to enable the autonomy to manage and supervise

ML workflows.

Conclusions:

• Different teams could leverage Scanflow-K8s to manage ML workflows at different phases (ML

training, ML inference).

• Multiple agents could collaborate to debug a drift anomaly problem, retrain, and upgrade a new

model.

• Agents could perform and take actions to keep the performance and availability of ML workflows

in this multi-layer controlled autonomic architecture.

Contents

4. Fine-Grained Scheduling for Containerized HPC

Workloads
• System Architecture

• Fine-Grained Scheduling

• Application-layer Granularity Selection
• Infrastructure-layer Task-group Scheduling

• Evaluation

32

System Architecture

Fig 13. Scanflow(MPI)-K8s: A practical platform for managing HPC workflows

[6] Peini Liu and Jordi Guitart, Fine-Grained Scheduling for Containerized HPC Workloads in Kubernetes Clusters, The 2022 High Performance Computing and

Communications (HPCC-2022), December 2022, Chengdu, China, Preprint: arXiv.2211.11487, accepted.

• Application layer

MPI workload model (to

support the specification of multi-

container deployments)

• Infrastructure layer

MPI workload controller (to

allocate processes to each container

and define the resource specification

for each container)

MPI workload allocation (to

schedule and start containers on

nodes)

33

Fine-Grained Scheduling

• Application-layer Granularity Selection

Step 1: Scanflow-planner agent: Granularity selection for

HPC workloads (decide number of containers, resource for

each container by considering the application profile)

• Infrastructure-layer Task-group Scheduling

Step 2: Volcano-controller manager: Dynamic MPI-aware

job controller (initialize pod specification with allocated

processes to containers and calculated resources)

Step 3: Volcano-scheduler: TaskGroup (TG) scheduling

(consider evenly distribute MPI workers to nodes)

Step 4: Kubelet affinity setting: None by default or enable

CM (CPU/Memory affinity)

Fig 14. Scheduling steps for HPC workloads deployment

34

Fine-Grained Scheduling Results

Conclusion: Fine-grained

scheduling can reduce the

response time of HPC

workloads up to 35%, as well

as improve the makespan up

to 34%.

Fig 15. Makespan of different scheduling scenario: 20 jobs with different types

Fig 16. Average job running time of DGEMM

35

Conclusion

➔ We proposed fine-grained scheduling for allocating containerized HPC workloads in a

Scanflow(MPI)-K8s cluster.

Conclusions:
• We extended the Scanflow-K8s platform to support HPC MPI workloads.

• We created new policies in both the application-layer planner-agent (e.g., granularity selection) and

the infrastructure-layer Volcano controller and scheduler (e.g., adding an MPI-aware controller and a

task-group scheduling plugin) to improve the two-layer scheduling.

• Our proposed fine-grained scheduling can reduce the response time of HPC workloads up to 35%,

and improve the makespan up to 34%.

Contents 5. Conclusion and Future Work

Conclusion

• Enabled deployments of HPC, BD, and AI

workloads using containers.

• Analyzed the performance of HPC, BD, and AI

workloads running on containers, considering

diversities from application-level, container-level

and hardware-level.

• Established an agent-based autonomic

management platform for containerized workloads.

• Optimized scheduling in containerization platform

for HPC workloads and provided autonomic

management for ML workflows.

37

Conclusion and Future Work

Future Work

• Optimize scheduling in containerization

platform for AI workloads (Fine-grained

scheduling, affinity, mixed GPU

share/number allocation).

• Consider more diverse hardware such as IoT

devices, performance under QoS and energy

constraints.

Publications included in this talk

1. Journals:

• Peini Liu and Jordi Guitart, Performance comparison of multi-container deployment schemes for HPC workloads: an empirical

study, The Journal of Supercomputing, vol. 77, no. 6, pp. 6273-6312, June 2021. DOI: 10.1007/s11227-020-03518-1.

• Peini Liu and Jordi Guitart, Performance characterization of containerization for HPC workloads on InfiniBand clusters: an

empirical study, Cluster Computing, vol. 25, no. 2, pp. 847-868, April 2022. DOI: 10.1007/s10586-021-03460-8.

2. Conferences:

• Peini Liu, Gusseppe Bravo-Rocca, Jordi Guitart, Ajay Dholakia, David Ellison, and Miroslav Hodak, Scanflow: an end-to-end

agent-based autonomic ML workflow manager for clusters, In Proceedings of the 22nd International Middleware Conference:

Demos and Posters, December 2021, Virtual Event, Canada. pp. 1-2, DOI: 10.1145/3491086.3492468

• Peini Liu, Gusseppe Bravo-Rocca, Jordi Guitart, Ajay Dholakia, David Ellison, and Miroslav Hodak, Scanflow-K8s: Agent-based

Framework for Autonomic Management and Supervision of ML Workflows in Kubernetes Clusters'', 2022 IEEE/ACM 21st

International Symposium on Cluster, Cloud and Internet Computing (CCGrid), May 2022, Taormina, Italy, pp. 376-385, DOI:

10.1109/CCGrid54584.2022.00047

• Peini Liu and Jordi Guitart, Fine-Grained Scheduling for Containerized HPC Workloads in Kubernetes Clusters, The 2022 High

Performance Computing and Communications (HPCC-2022), December 2022, Chengdu, China, Preprint: arXiv.2211.11487,

accepted.

• Peini Liu, Jordi Guitart and Amir Taherkordi, Performance Characterization of Multi-container Deployment Schemes for Online

Machine Learning Inference on Kubernetes Clusters, 2023 IEEE Cloud, submitted.
38

Publications

Thanks!

• Universitat Politecnica de Catalunya (UPC)

• Barcelona Supercomputing Center (BSC)

• Lenovo – Infrastructure Solution Team

