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Context

Fig 1. Computing evolving stages over the last three decades.

Increasing usage of HPC, BD and ML in multiple disciplines with distributed 

heterogeneous computing.

• HPC solve scientific problems 

using modeling and simulation.

• HPC has evolved into Data 

Science.

• High Performance Data 

Analysis workloads in the cloud 

has been gaining popularity.

• ML-enabled science, engineering, 

arts, health, and business.

• ML is joining the HPC and BD 

convergence

https://www.bsc.es/research-and-development/research-areas
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Containerization for Convergence

• Portability 

• Agility

• Fast and flexible deployment

• Consistent environment 

Fig 2. Containerization as the narrow waist of the system software stack

• Transparency

• Isolation

• Low costs

• Keep the performance

https://www.etp4hpc.eu/
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Challenges

Fig 3. Convergence of HPC, BD and ML on containerized infrastructures

• Infrastructure layer

• Feature complete isolation of the 

applications in a multi-tenant 

environment

• Seamlessly and efficiently provide 

heterogeneous resources (e.g., 

Infiniband, NUMA, etc.)

• Allow agile and fine-grain dynamic 

resource provisioning to orchestrate 

resource sharing

• Integrate HPC and Cloud scheduling 

and resource management 

techniques, while providing fault 

tolerance, energy efficiency, and 

scalability



• Multi-core processors and Non-uniform memory access (NUMA) memory architecture

• Remote Direct Memory Access (RDMA) enabled networking (InfiniBand)

• Solid State Drive (SSD) and General Parallel File System (GPFS™)

• Accelerators (NVIDIA GPUs)
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Drivers of Modern HPC Cluster Architectures

Multi-core processor
InfiniBand – 1usec Latency, 
100Gbps Bandwidth

SSD, NVMe-SSD Accelerator
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Challenges

Fig 3. Convergence of HPC, BD and ML on containerized infrastructures

• Platform layer

• Fulfill applications requirements 

of portability and reproducibility by 

allowing the definition of 

encapsulated and customized 

diverse software stacks

• Enable DevOps to efficient 

create/terminate/manage those 

software environments on demand



• Enable deployments and understand the performance of HPC, BD, and

ML workloads using containers.

• Provide an autonomic management platform for containerized HPC, BD,

and ML workloads.

• Optimize cluster management and scheduling for containerized HPC, BD,

and ML workloads.
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Objectives

How to leverage virtualization/containerization in both the infrastructure layer

and the platform layer to support the convergence of a wide range of types of

applications while taking advantage of heterogeneous HPC, Cloud, and Edge

resources?
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Performance Analyses of HPC, BD, and ML Workloads 
Running on Containers

• Job (application level diversity)
• Container Pool (container level diversity)
• Host (hardware level diversity)

Fig 4. Container-based deployment model

Containers provide a pool of resources for a group of applications’ 

processes/threads.

[1] Peini Liu, and Jordi Guitart. "Performance comparison of multi-container deployment schemes for HPC workloads: an empirical study." The Journal of Supercomputing 77.6 

(2021): 6273-6312.

[2] Peini Liu, and Jordi Guitart. "Performance characterization of containerization for HPC workloads on InfiniBand clusters: an empirical study." Cluster Computing 25.2 

(2022): 847-868.
[3] Peini Liu, Jordi Guitart and Amir Taherkordi, “Performance Characterization of Multi-container Deployment Schemes for Online Machine Learning Inference”, 2023 IEEE 

Cloud, submitted.
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Performance Analysis of Multi-container Deployments 
for HPC Workloads

[1] Peini Liu, and Jordi Guitart. "Performance comparison of multi-container deployment schemes for HPC workloads: an empirical study." The Journal of Supercomputing 77.6 

(2021): 6273-6312.

[2] Peini Liu, and Jordi Guitart. "Performance characterization of containerization for HPC workloads on InfiniBand clusters: an empirical study." Cluster Computing 25.2 

(2022): 847-868.

Container-level:

• Enable different containerization

• Enable multi-container packing schemes

• Enable setting cpu/memory affinity

• Enable different networking 

interconnection mode and protocols

Application-level:

• Exactly- and over-subscribed modes

Hardware-level:

• InfiniBand, UMA/NUMA architecture

Fig 5. Evaluation dimensions
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Performance Analysis of Multi-container Deployments 
for HPC Workloads

Fig 6. Multi-container deployment scenarios

Multi-container deployments：

• Application-level: Exactly-
subscribed mode (E1-E5) and 
Over-subscribed mode (O1-O4)

• Hardware-level: UMA and 
NUMA platforms

• Container-level: Granularity

• E1-E5, O1-O4, increase the 
number of containers, decrease 
the number of processes per 
container

[1] Peini Liu, and Jordi Guitart. "Performance comparison of multi-container deployment schemes for HPC workloads: an empirical study." The Journal of Supercomputing 77.6 

(2021): 6273-6312.



Summary：

• Singularity has close to bare-metal 
performance.

• For Docker and Singularity-instance, 
multi-container deployments incurs 
performance degradation for MPI 
communication workloads.

• Fine-grained multi-container 
deployments of MPI throughput 
workloads show a performance 
improvement.

• Some performance degradation on over-
subscribed mode is due to the 
scheduling of cgroups by Linux CFS.
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Performance Analysis of Multi-container Deployments 
for HPC Workloads

Fig 7. Impact of container granularity in PingPong Bandwidth and 

EP-DGEMM performance on NUMA hardware platform setting

Fig 8. Performance comparison of EP-DGEMM with different 

number of containers
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Multi-container deployments 
with affinity：

• Application-level: Exactly-
subscribed mode (E2-E4) and 
Over-subscribed mode (O2-O3)

• Hardware-level: UMA and 
NUMA platforms

• Container-level: Granularity and 
Affinity

• E2-E4, O2-O3, increase the 
number of containers, decrease 
the number of processes per 
container

• CPU/CPUMEM/CPUMEMPIN 
affinity settings

Fig 9. Multi-container deployment scenarios with affinity

Performance Analysis of Multi-container Deployments 
With Affinity for HPC Workloads

[1] Peini Liu, and Jordi Guitart. "Performance comparison of multi-container deployment schemes for HPC workloads: an empirical study." The Journal of Supercomputing 77.6 

(2021): 6273-6312.
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Performance Analysis of Multi-container Deployments 
With Affinity for HPC Workloads

Summary：

• Multi-container deployments with affinity cannot prevent the performance degradation of Docker 
and Singularity-instance with MPI communication workloads.

• Finer-grained container granularity can improve the performance on multi-container deployments 
with affinity depending on the CPU and memory usage characteristics.

• On over-subscribed mode, CPU affinity is able to overcome the CFS load imbalance problem 
causing performance degradation.

16

Fig 10. Impact of container granularity with affinity in PingPong Bandwidth and EP-DGEMM 

performance on NUMA hardware platform setting
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Performance Analysis of Multi-container Deployments 
for HPC Workloads on InfiniBand Clusters

Summary：
• Underlay container networking 

approaches achieve comparable 

performance to bare-metal experiments. 

Overlay networking brings explicit latency 

increase and bandwidth degradation.

• Fine-grain multi-container deployments 

could increase the network latency, but 

can alleviate the latency and contention of 

memory accesses.

• Setting affinity cannot avoid the overhead 

incurred by overlay networking, but can 

help with computation and memory 

allocation.Fig 12. Performance of EP-DGEMM using multi-container 

deployments scenarios with different network fabrics when 

running on a testbed with 7 nodes (1 master + 6 workers)
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Performance Analysis of Multi-container Deployments 
for Online ML Inference Workloads

Fig 6. Evaluation system architecture of multi-container 

deployment schemes for ML model inference

[3] Peini Liu, Jordi Guitart and Amir Taherkordi, “Performance Characterization of Multi-container Deployment Schemes for Online Machine Learning Inference”, 2023

IEEE Cloud, submitted.

Container-level:

• Enable multi-container packing schemes

• Enable setting cpu/memory affinity

Application-level:

• Threads model (inter-op, intra-op)

• User Scenarios (SingleStream, 

MultiStream, Server, Offline)

Hardware-level:

• NUMA architecture
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Granularity Settings: Affinity Settings:

Resource requirements: 

Threading model:

Baseline:

Multi-container deployments:

Resource mapping: 

ANY:

CPUMEM:

Performance Analysis of Multi-container Deployments 
for Online ML Inference Workloads
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Client Settings:

Performance Analysis of Multi-container Deployments 
for Online ML Inference Workloads
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Conclusion：Multi-container deployments show significant performance improvements up to 69% and 

87% regarding the single-container deployment on single-node and four-node clusters, respectively. These 

deployments with explicit CPU/memory affinity settings can sum up to 9% and 68% to the granularity gains 

on single-node and four-node clusters, respectively.

Performance Analysis of Multi-container Deployments 
for Online ML Inference Workloads

Fig 7. Impact of container granularity and affinity in SUT performance (Single-node left, Four-node right)
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Research Stay Report

Networks and Distributed Systems Group at University of Oslo 

(UiO), Norway. [Host: Amir Taherkordi]

• WD1: present our current Ph.D. work regarding the 

multi-container deployment shemes and fine-grained 

scheduling policies for HPC applications

• WD2: collaborate in a conference paper regarding 

performance analyses of multi-container deployment 

schemes for online ML inference 

• WD3: study on the edge platforms at UiO

Acknowledgment: Many thanks to Amir and Jordi for 
providing me the chance to this research stay. Especially 
thank the BSC mobility program, FI grant 2020 FI-B 00257, 
and Amir for funding this trip.
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Multi-layer Architecture for Autonomic Management and 
Supervision for ML Workflows

Fig 8. Scanflow-K8s: A practical platform for autonomic management and supervision for ML workflows

[4] Peini Liu, Gusseppe Bravo-Rocca, Jordi Guitart, Ajay Dholakia, David Ellison, and Miroslav Hodak, Scanflow-K8s: Agent-based Framework for Autonomic Management and

Supervision of ML Workflows in Kubernetes Clusters'', 2022 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid), May 2022, Taormina,

Italy, pp. 376-385, DOI: 10.1109/CCGrid54584.2022.00047
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Agents for Autonomic ML Workflows

Agent Architecture Agent Social Ability

Autonomic management strategy

● Event: a state change

● Constraint: a boolean expression

● Action: a single or combined 

operation primitives or a request to 

call other agent

● Interaction through RESTful APIs

● Interaction through shared artifacts
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Case Study And Experimental Analysis

MNIST Classification[1] MLPerf Inference Benchmark[2]

Scanflow Tutorial - MNIST classification: https://github.com/bsc-scanflow/scanflow/tree/main/tutorials/mnist
Scanflow Tutorial - MLPerf inference https://github.com/bsc-scanflow/scanflow/tree/main/tutorials/mlperf

Objectives:

• How the various teams will 

use Scanflow-K8s in the 

different phases to build and 

deploy their workflows.

• How agents manage and 

supervise the ML workflows at 

the application layer. (i.e., to 

detect and handle drift 

anomalies).

Objectives:

• How Scanflow-K8s can deal 

with context changes and non-

functional requirements by 

taking advantage of the 

resource manager and also 

the collaboration between 

application and 

infrastructure layers.

https://github.com/bsc-scanflow/scanflow/tree/main/tutorials/mnist
https://github.com/bsc-scanflow/scanflow/tree/main/tutorials/mlperf


• Scanflow-K8s for MNIST
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AI workloads/workflows running on containers

[5] Peini Liu, Gusseppe Bravo-Rocca, Jordi Guitart, Ajay Dholakia, David Ellison, and Miroslav Hodak, Scanflow: an end-to-end agent-based autonomic ML workflow

manager for clusters, In Proceedings of the 22nd International Middleware Conference: Demos and Posters, December 2021, Virtual Event, Canada. pp. 1-2, DOI:

10.1145/3491086.3492468

https://github.com/bsc-scanflow/scanflow

Fig 9. Data Science team works at training phase
Fig 10. Data Engineer team works at inference phase



S1: agents manage and supervise the ML workflows at the application layer. (i.e., to detect and 
handle drift anomalies).
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MNIST Classification

• Tracker: Track predictions

• Checker:

• Drift Detector Checker - Convolutional Deep 

AutoEncoder + Critical Point Selector

• Planner: 

• Model retraining Planner

• Executor: Model update

Fig 11. Application-layer autonomy results (model drift detection)
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MLPerf Benchmarks

• S2: Agent-tuned auto-scaling 
according to an application-level 
non-functional QoS requirement 
provided by the end-user performs 
better

• S3: Agent tunes the container-
level resource and affinity 
configuration to optimize 
performance according to workflow 
type and resource availability

• S4: Agent deals with service 
unavailability by redirecting the 
traffic to a backup service defined 
at the application level.

Fig 12. Multi-layer autonomy results (Scenario 2-4) 

S2-S4: Scanflow-K8s can deal with context changes and non-functional requirements by taking 
advantage of the resource manager and also the collaboration between application and 
infrastructure layers.

(1) Scenario 2

(2) Scenario 3

(3) Scenario 4
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Conclusion

➔ We proposed Scanflow-K8s platform to enable the autonomy to manage and supervise 

ML workflows.

Conclusions:

• Different teams could leverage Scanflow-K8s to manage ML workflows at different phases (ML 

training, ML inference).

• Multiple agents could collaborate to debug a drift anomaly problem, retrain, and upgrade a new 

model.

• Agents could perform and take actions to keep the performance and availability of ML workflows 

in this multi-layer controlled autonomic architecture.
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System Architecture

Fig 13. Scanflow(MPI)-K8s: A practical platform for managing HPC workflows

[6] Peini Liu and Jordi Guitart, Fine-Grained Scheduling for Containerized HPC Workloads in Kubernetes Clusters, The 2022 High Performance Computing and

Communications (HPCC-2022), December 2022, Chengdu, China, Preprint: arXiv.2211.11487, accepted.

• Application layer

MPI workload model (to

support the specification of multi-

container deployments)

• Infrastructure layer

MPI workload controller (to 

allocate processes to each container 

and define the resource specification 

for each container)

MPI workload allocation (to 

schedule and start containers on 

nodes)
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Fine-Grained Scheduling

• Application-layer Granularity Selection

Step 1: Scanflow-planner agent: Granularity selection for 

HPC workloads (decide number of containers, resource for 

each container by considering the application profile)

• Infrastructure-layer Task-group Scheduling

Step 2: Volcano-controller manager: Dynamic MPI-aware 

job controller (initialize pod specification with allocated 

processes to containers and calculated resources)

Step 3: Volcano-scheduler: TaskGroup (TG) scheduling 

(consider evenly distribute MPI workers to nodes)

Step 4: Kubelet affinity setting: None by default or enable 

CM (CPU/Memory affinity)

Fig 14. Scheduling steps for HPC workloads deployment
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Fine-Grained Scheduling Results

Conclusion: Fine-grained 

scheduling can reduce the 

response time of HPC 

workloads up to 35%, as well 

as improve the makespan up 

to 34%.

Fig 15. Makespan of different scheduling scenario: 20 jobs with different types

Fig 16. Average job running time of DGEMM
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Conclusion

➔ We proposed fine-grained scheduling for allocating containerized HPC workloads in a 

Scanflow(MPI)-K8s cluster.

Conclusions:
• We extended the Scanflow-K8s platform to support HPC MPI workloads.

• We created new policies in both the application-layer planner-agent (e.g., granularity selection) and 

the infrastructure-layer Volcano controller and scheduler (e.g., adding an MPI-aware controller and a 

task-group scheduling plugin) to improve the two-layer scheduling. 

• Our proposed fine-grained scheduling can reduce the response time of HPC workloads up to 35%, 

and improve the makespan up to 34%.
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Conclusion

• Enabled deployments of HPC, BD, and AI 

workloads using containers.

• Analyzed the performance of HPC, BD, and AI 

workloads running on containers, considering 

diversities from application-level, container-level 

and hardware-level.

• Established an agent-based autonomic 

management platform for containerized workloads.

• Optimized scheduling in containerization platform 

for HPC workloads and provided autonomic 

management for ML workflows.

37

Conclusion and Future Work

Future Work

• Optimize scheduling in containerization 

platform for AI workloads (Fine-grained 

scheduling, affinity, mixed GPU 

share/number allocation).

• Consider more diverse hardware such as IoT

devices, performance under QoS and energy 

constraints.
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