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Outline 
•  Background 

–  Genome-wide association studies (GWAS)  

–  Difficulties in mining GWAS data  

–  Motivation for pathway and network oriented analysis of GWAS 

•  Pathway and Network Oriented GWAS Analysis 
(PANOGA) 

•  Results and Discussions on: 
–  Rheumatoid Arthritis, Epilepsy, Intracranial Aneurysm, Behcet’s 

disease dataset 

•  Integrative analysis of transcriptomics and epigenomics 
data using PANOGA 

•  Integrative –omics Data Analysis 

•  Ongoing Research 

 



•  The main goal of human genetics is to 
understand the inherited basis of human 
variation in phenotypes, elucidating human 
physiology and disease. 

•  Extensive studies are currently being 
performed to associate disease susceptibility 
with genetic variations, such as single 
nucleotide polymorphisms (SNPs).  

•  Genome-wide association studies (GWAS) 
emerged as a major tool to identify disease 
susceptibility loci and have been successful in 
detecting the association of a number of SNPs 
with complex diseases. 

Background 



Genome-wide association studies (GWAS)  

Figure 1. Genome-wide association studies (GWAS)  
Excerpted from Genomewide Association Studies and Assessment of the Risk of Disease, 
Manolio TA. N Engl J Med 2010;363:166-176. 
 



•  Testing only for association of a single 
SNP is insufficient to dissect the complex 
genetic structure of common diseases. 

•  Extracting biological insight from GWAS 
and understanding the principles 
underlying the complex phenomena that 
take place on various biological pathways 
remain a major challenge. 

•  Recent studies have shown that the full 
potential of GWAS can only be achieved 
by integrating pathway and network 
based analysis. 

Motivation for pathway and network oriented 
analysis of GWAS 



Pathway and Network Oriented GWAS 
Analysis (PANOGA) 

•  Developed a novel methodology to 
Associate SNPs with Human Diseases 
According to Their Pathway Related 
Context. 

•  In this methodology, we incorporated 
SNP functional properties, protein-protein 
interaction networks, pathway 
classification tools into GWAS. 

•  Hence, leading molecular pathways, 
which cannot be picked up using 
traditional analyses were identified. 



Our Methodology (PANOGA) 

B. Bakir-Gungor, O.U. Sezerman, “A New Methodology to Associate SNPs with Human Diseases 
According to Their Pathway Related Context”, 2011, PLoS ONE, 6(10): e26277. 



SNP Functionalization 
Functional Category Tool Description Meta-tool 

Protein Coding 
LS-SNP, SNPs3D, SIFT, 
SNPeffect 

SNP annotation tool, Impact of nsSNPs on protein function, 
Prediction of amino acid substitution effects, SNP 
annotation with human disease F-SNP 

Protein Coding PolyPhen Prediction of amino acid substitution effects 
SPOT,  
F-SNP 

Protein Coding,  
Splicing Regulation,  
Transcriptional Regulation 

 
Ensembl 

 
Extensive genomic database including SNPs  
and gene transcripts 

 
F-SNP 

Splicing Regulation 
ESEfinder, ESRSearch, 
PESX, RescueESE 

Exonic splice sites, Exonic-splicing regulatory (ESR) 
sequences, Exon splicing enhancers/silencers, Exonic splice 
sites F-SNP 

 
Transcriptional Regulation 

Consite 
TFSearch  

Conserved transcription factor binding sites, 
Transcription factor binding sites F-SNP 

Transcriptional Regulation SNPnexus Conserved transcription factor binding sites SNPnexus 
Transcriptional Regulation, 
Conserved Region GoldenPath MicroRNA, cpgIslands, evolutionary conserved regions F-SNP 
Conserved Region ECRBase Evolutionary conserved regions SPOT 

Post-translation 
KinasePhos, OGPET, 
Sulfinator 

Phosphorylation sites, Prediction of O-glycosylation sites in 
proteins, Tyrosine sulfination sites 

 
F-SNP 

Genomic Coordinates dbSNP  General SNP/gene transcript properties SPOT 

Genomic Coordinates UCSC 
Extensive genomic database including SNPs and gene 
transcripts F-SNP 

 
LD estimation 

HapMap, 
Haploview 

Dense genotyping on multiple populations, useful for LD 
estimates 
Estimation of r2 LD coefficients for each population 

 
SPOT 

B. Bakir-Gungor, O.U. Sezerman, “A New Methodology to Associate SNPs with Human Diseases 
According to Their Pathway Related Context”, 2011, PLoS ONE, 6(10): e26277. 



Our Methodology (ctd.) 

•  SNP-wise weighted p-value calculation:  
–  Combines functional, genomic information of a 

SNP with genotypic p-values of association for 
each tested SNP (Pw =P/10FS) 

•  Assigning SNPs to genes:  
–  Considering all known SNP/gene transcript 

associations, the gene with the highest priority 
is chosen. 

•  Active sub-network searches  
–  By using the gene-wise weighted p-values, 

active sub-networks are found in the human PPI 
network. 

•  Functional Enrichment of Sub-networks  
–  Evaluate whether the identified sub-networks 

are biologically meaningful.  



Rheumatoid Arthritis (RA) 
•  A chronic, systemic inflammatory disorder that 

usually affects joints. 

•  About 1% of the world's population is affected by 
RA. 

 
•  Known variants explain ~20% of the genetic burden 

of RA.  

•  Additional variations remain to be discovered.  

Figure 3. Rheumatoid Arthritis 
 

http://rheumatoidarthritismedicati 
onss.com/Rheumatoid-Arthritis.jpg 



Rheumatoid Arthritis (RA) dataset 

•  Wellcome Trust Case Control Consortium (WTCCC) 
dataset 

•  25,027 SNPs were included with P<0.05.  

# of 
Cases 

# of 
Controls 

# of genotyped 
SNPs 

Platform 

1,999 3,004 500,475 Affymetrix 
GeneChip 
Human Mapping 
500 K Array Set  

Table 1. Summary of Rheumatoid Arthritis (RA)dataset.  



Our Methodology (PANOGA) 

B. Bakir-Gungor, O.U. Sezerman, “A New Methodology to Associate SNPs with Human Diseases 
According to Their Pathway Related Context”, 2011, PLoS ONE, 6(10): e26277. 



Mapping to Human PPI network 

Figure 2. a. Human PPI network including 10,174 nodes and 61,070 edges. b. Zoomed in view of the 
human PPI network. 25,027 SNPs  from RA GWAS dataset are assigned to 4,094 genes (shown in 
yellow). 

a. b. 

B. Bakir-Gungor, O.U. Sezerman, “A New Methodology to Associate SNPs with Human Diseases According to Their 
Pathway Related Context”, 2011, PLoS ONE, 6(10): e26277. 



Our Methodology (PANOGA) 

B. Bakir-Gungor, O.U. Sezerman, “A New Methodology to Associate SNPs with Human Diseases 
According to Their Pathway Related Context”, 2011, PLoS ONE, 6(10): e26277. 



Identified Subnetworks 

Figure 3.  a. The highest scoring sub-network is composed of 275 nodes and 778 
edges (as found in active sub-network search step). Node size is shown as 
proportional to the degree of a node. b. 20 genes known in literature as associated 
with RA are shown in green.  

a. b. 

B. Bakir-Gungor, O.U. Sezerman, “A New Methodology to Associate SNPs with Human Diseases 
According to Their Pathway Related Context”, 2011, PLoS ONE, 6(10): e26277. 



Figure 4.  a. Node degree distribution of the highest scoring sub-network follows a power-law (P(k)=ax-γ, 
a= 120.03, γ=1.353, R2=0.773, Correlation= 0.891 in log log scale), showing that our network displays 
scale-free properties, as expected from a biological network. b. Node degree distribution of a same sized 
random network, obtained using Erdos-Renyi algorithm. 
 

a. b. 

Identified vs. Random Subnetworks  

B. Bakir-Gungor, O.U. Sezerman, “A New Methodology to Associate SNPs with Human Diseases According to Their 
Pathway Related Context”, 2011, PLoS ONE, 6(10): e26277. 



Our Methodology (PANOGA) 

B. Bakir-Gungor, O.U. Sezerman, “A New Methodology to Associate SNPs with Human Diseases 
According to Their Pathway Related Context”, 2011, PLoS ONE, 6(10): e26277. 



Table 2. Comparison of found KEGG pathways with previous studies in terms of number of genes associated 
within each KEGG term. Blue denotes computationally found pathways, green denotes experimentally 
verified RA associated pathways, and red denotes both experimental and computational verification. 

 
 

Comparative Pathway Enrichment  Results of RA 

Computational 
verification 
 

Experimental 
verification 
 

Computational 
and 
Experimental 
verification 



Functionally 
Grouped Annotation 
Network of RA  

Figure 5.  a. Functionally grouped annotation network of our highest scoring sub-network. The relationships between 
the KEGG terms (nodes) were based on the similarity of their associated genes. The size of the nodes reflected the 
statistical significance of the terms (term p-values corrected with Bonferroni). Edges represent the existence of shared 
genes. The thickness of the edges is proportional to the number of genes shared and calculated using kappa statistics. 
The grouped terms (according to their kappa scores) were shown in same color. b. Zoomed in view of the functional 
annotation network. The most significant pathway term of the group with the lowest term p-value (the group leading term) 
was shown in bold using the group specific color.  
 

a. 

b. 



Comparative Evaluation of RA Associated Pathways 

Figure 6. Comparison of KEGG pathway terms with literature verified RA genes/our gene set were shown in 
green/red, respectively. Nodes represent the identified pathway terms from any one of the two sets. The color 
gradient showed the gene proportion of each set associated with the term. White color represented equal 
proportions from the two comparison sets. The size of the nodes reflected the statistical significance of the 
terms (term p-values corrected with Bonferroni). Edges represented the existence of the shared genes 
between the pathway terms and node border colors mapped to the group colors. 

 
 

Our candidate 
gene set 
 

RA genes known 
in literature 
 

Both 
 



Insights 

•  We present PANOGA, pathway and network 
oriented GWAS analysis, that challenges to 
identify disease associated KEGG pathways by 
combining nominally significant evidence of 
genetic association with current knowledge of 
biochemical pathways, protein-protein interaction 
networks, and functional information of selected 
SNPs. 

•  We identified both previously known and 
additional KEGG pathways as associated with RA. 

 

B. Bakir-Gungor, O.U. Sezerman, “A New Methodology to Associate SNPs with Human Diseases 
According to Their Pathway Related Context”, 2011, PLoS ONE, 6(10): e26277. 



Insights (ctd.) 

•  The KEGG functional enrichment of the RA 
specific drug target genes included these 
additionally found pathway terms.  

•  Among the previously known pathways, we 
identified additional genes as associated with RA. 

•  Using our highest scoring sub-network, we 
generated functionally grouped pathway network 
of RA.   

 

B. Bakir-Gungor, O.U. Sezerman, “A New Methodology to Associate SNPs with Human Diseases 
According to Their Pathway Related Context”, 2011, PLoS ONE, 6(10): e26277. 



Improvements in the methodology 

•  Instead of focusing only on the highest scoring 
sub-network, the functional enrichments of the 
generated sub-networks are combined. 

•  The SNPs in the affected genes and pathways are 
identified. 

•  Pathway and gene based presentation options. 

•  The effect of the overlap between sub-networks is 
evaluated. 



Overview of the  
PANOGA 
Protocol 

B . B a k i r - G u n g o r , O . U . 
Sezerman, "Identification of SNP 
Ta rge ted Pa thways F rom 
Genome-wide Association Study 
(GWAS) Data”, 2012, Nature 
Protocol Exchange.  



Insights  
•  PANOGA protocol represents a feasible solution 

for the identification of pathway markers to 
bridge the gap between GWAS and biological 
mechanisms of complex diseases (Bakir-Gungor 
and Sezerman, 2012).  

•  Since our method can be easily applied to GWAS 
datasets of other diseases, it will facilitate the 
identification of disease specific pathway 
combinations.  

•  Due to its modular design pattern, PANOGA 
protocol gives flexibility to the user.  



Overview of the  
PANOGA Web-server 

B. Bakir-Gungor, E. Egemen, O.U. Sezerman, 
“PANOGA: a web-server for identification of 
SNP targeted pathways from genome-wide 
association study data”, 2014, Bioinformatics, 
30(9): 1287-1289.  

To present the geneticists a 
fully automated option, we 
implemented PANOGA as a 
web-server.  



Fig. 7. A snapshot of the web server input (A) and 
results page (B). A link from the results page for 
customized KEGG pathway maps opens the zoomed-in 
version for visual display (C). The shade of red color in 
genes indicates the number of targeted SNPs (typed in 
the GWAS of disease) per base pair of the gene. Red 
refers to the highest targeted gene, whereas white 
refers to a gene product not targeted by the SNPs. 

PANOGA: a web server for 
identification of SNP-

targeted pathways from 
genome-wide association 

study data 
 

B. Bakir-Gungor, E. Egemen, O.U. Sezerman, 
“PANOGA: a web-server for identification of SNP 
targeted pathways from genome-wide association 
study data”, 2014, Bioinformatics, 30(9): 
1287-1289.  



Epilepsy 
•  Epilepsy is a abnormal discharge. Characterized by 

recurrent and spontaneous seizures. 

•  Common neurologic disorder that affects around 1% of the 
world population, including one in 200 children. 

•  In partial epilepsy (PE), seizure affects only one part of the 
brain. 

•  It can run in families. 

Figure 13: Partial Epilepsy 
http://trialx.com/curetalk/wp-content/blogs.dir/7/files/2011/05/diseases/Partial_Epilepsy-3.jpg 



Partial Epilepsy Dataset 

•  Cochran–Mantel–Haenszel test results were used 
as the genotypic p-values of the identified SNPs. 

•  Using P<0.05 cutoff: 
•  28,450 SNPs were included. 

# of 
Cases 

# of 
Controls 

# of genotyped 
SNPs 

Platform 

3,445 6,935 528,745 SNPs  Illumina, Human610-
Quadv1 genotyping chips  

Table 3. Summary of Partial Epilepsy (PE) dataset.  
 



KEGG Term	
  
Term Pvalue 

Corr Bonf	
  
Wang et 
al. Study	
   OMIM	
  

GWAS on 
PE	
  

CNV Study on 
Epilepsy	
  

Candidate 
Gene List	
   EpiGAD	
  

Rogic et al. 
Study	
  

Complement and coagulation 
cascades	
   2,16E-025	
   -	
   Y	
   -	
   -	
   -	
   -	
   Y	
  
Cell cycle	
   1,03E-024	
   -	
   Y	
   -	
   -	
   -	
   -	
   Y	
  
Focal adhesion	
   7,10E-023	
   Y	
   Y	
   Y	
   -	
   -	
   -	
   Y	
  
ECM-receptor interaction 1,62E-022	
   Y	
   Y	
   -	
   -	
   -	
   -	
   Y	
  
Jak-STAT signaling pathway 1,16E-021	
   Y	
   Y	
   -	
   -	
   -	
   -	
   Y	
  
MAPK signaling pathway 2,32E-019	
   Y	
   Y	
   Y	
   -	
   Y	
   Y	
   Y	
  
Proteasome	
   1,15E-018	
   -	
   -	
   -	
   -	
   -	
   -	
   -	
  
Ribosome	
   1,57E-018	
   -	
   -	
   -	
   -	
   -	
   -	
   Y	
  
Calcium signaling pathway 5,73E-018	
   Y	
   Y	
   Y	
   Y	
   Y	
   Y	
   Y	
  
Regulation of actin cytoskeleton 9,23E-018	
   Y	
   Y	
   -	
   Y	
   -	
   -	
   Y	
  
Adherens junction	
   1,01E-017	
   -	
   -	
   Y	
   -	
   -	
   -	
   Y	
  
Pathways in cancer 3,94E-017	
   Y	
   Y	
   Y	
   -	
   -	
   -	
   Y	
  
Gap junction 6,32E-017	
   Y	
   Y	
   Y	
   -	
   -	
   -	
   Y	
  
Apoptosis 3,72E-016	
   Y	
   Y	
   -	
   -	
   -	
   -	
   Y	
  
Long-term depression 2,90E-015	
   Y	
   Y	
   Y	
   Y	
   Y	
   Y	
   Y	
  
Axon guidance	
   4,01E-015	
   -	
   -	
   -	
   -	
   -	
   -	
   Y	
  
Fc gamma R-mediated phagocytosis 2,22E-014	
   Y	
   Y	
   Y	
   Y	
   -	
   -	
   Y	
  
Tight junction 2,82E-014	
   Y	
   Y	
   Y	
   -	
   -	
   -	
   Y	
  
ErbB signaling pathway 4,04E-014	
   Y	
   Y	
   Y	
   -	
   -	
   -	
   Y	
  
Wnt signaling pathway 6,28E-014	
   Y	
   Y	
   Y	
   -	
   Y	
   -	
   Y	
  
Chemokine signaling pathway 9,60E-014	
   Y	
   -	
   Y	
   Y	
   -	
   -	
   Y	
  
GnRH signaling pathway 1,22E-013	
   Y	
   Y	
   Y	
   -	
   -	
   -	
   Y	
  
Pentose phosphate pathway	
   1,29E-013	
   -	
   -	
   -	
   -	
   -	
   -	
   -	
  
Long-term potentiation 2,28E-013	
   Y	
   Y	
   Y	
   -	
   Y	
   -	
   Y	
  
Neurotrophin signaling pathway 3,24E-013	
   Y	
   Y	
   -	
   -	
   -	
   -	
   Y	
  
Glycolysis / Gluconeogenesis 4,29E-013	
   Y	
   Y	
   -	
   -	
   -	
   -	
   Y	
  
Notch signaling pathway	
   9,33E-013	
   -	
   -	
   -	
   -	
   -	
   -	
   -	
  
Dilated cardiomyopathy 1,40E-012	
   -	
   Y	
   Y	
   -	
   Y	
   -	
   Y	
  
TGF-beta signaling pathway	
   2,32E-012	
   -	
   -	
   -	
   -	
   -	
   -	
   Y	
  

Table 4. Comparison of the top 30 SNP-targeted pathways with the pathways of the known genes, as 
associated to PE. Red color indicates pathway is found in at least 3 studies. 



Figure 8. The complement and coagulation cascade (a) Up and down-regulated genes are shown in red and 
in blue, respectively, as a result of microarray analysis for epilepsy-associated gangliogliomas. (b) The shade 
of red color in genes indicates the number of GWAS targeted SNPs per base pair of the gene. Red refers to 
the highest targeted gene, whereas white refers to a gene product, not targeted by the SNPs.  

a. b. 

B. Bakir-Gungor, et. al., "The Identification of SNP Targeted Pathways in Partial Epilepsies Using Genome-
wide Association Data”, 2013, Epilepsy Research, 105(1-2):92-102.  
 



Figure 9. Functionally grouped annotation network of the identified pathways for epilepsy dataset. The 
pathways are grouped based on the similarity of their SNP targeted genes.  
 
B. Bakir-Gungor, et. al., "The Identification of SNP Targeted Pathways in Partial Epilepsies Using Genome-
wide Association Data”, 2013, Epilepsy Research, 105(1-2):92-102.  
 



Insights 

•  We showed that PANOGA was able to identify 
significant pathways, explaining the pathogenesis 
of the epilepsy. 

•  The relation between these pathways and partial 
epilepsies was supported by previous studies in 
literature.  

•  20 out of the top 30 affected pathways were 
found to be common with at least three different 
studies, among the seven studies compared. 

•  Hence, we emphasize the importance of 
pathway-oriented analysis to enlighten disease 
development mechanisms (Bakir-Gungor, et al., 
2012). 



 
A Two Stage Genetic Algorithm Approach to Active Subnetwork Search  

Figure 10. Binary vector chromosome representation and crossover operation in ActiveSubnetworkGA. 
The graph represents the PPI network. Two subnetworks and their offspring are given underneath in 
binary vector representation form. Dark cells represent the nodes that are included in the subnetwork. 
Vector swapping is applied as the crossover operator.  

O. Ozisik, B. Bakir-Gungor, B. Diri, O.U. Sezerman, “Active Subnetwork GA: A Two Stage Genetic Algorithm 
Approach to Active Subnetwork Search”, 2017, Current Bioinformatics, 12(4): 320-328(9). 



O. Ozisik, B. Bakir-Gungor, B. Diri, O.U. Sezerman, “Active Subnetwork GA: A Two Stage Genetic Algorithm 
Approach to Active Subnetwork Search”, 2017, Current Bioinformatics, 12(4): 320-328(9). 

Scoring sub-networks 



O. Ozisik, B. Bakir-Gungor, B. Diri, O.U. Sezerman, “Active Subnetwork GA: A Two Stage Genetic Algorithm 
Approach to Active Subnetwork Search”, 2017, Current Bioinformatics, 12(4): 320-328(9). 

Active Sub-network Search Algorithms 



O. Ozisik, B. Bakir-Gungor, B. Diri, O.U. Sezerman, “Active Subnetwork GA: A Two Stage Genetic Algorithm 
Approach to Active Subnetwork Search”, 2017, Current Bioinformatics, 12(4): 320-328(9). 

Active Sub-network Search Algorithms 



Intracranial Aneurysm (IA) 

•  A cerebrovascular disease that 
affects around 1 per 50 people.  

•  Major public health concern, since 
rupture of an IA leads to stroke 
and death.  

•  To identify IA related genetic 
factors, DNA linkage, candidate 
gene, genetic association and 
GWAS have been used. 

•  Four recent GWAS identified some 
variants associated with IA, which 
collectively explain only 10% of 
the familial risk of IA. Figure 16: Intracranial (Cerebral) 

Aneurysm http://
www.yalemedicalgroup.org/stw/
images/161464.jpg 



Intracranial Aneurysm Datasets 
from Two Different Populations 

Population # of 
Cases 

# of 
Controls 

# of 
genotyped 
SNPs 

Platform 

European 2,780 12,515  832,000  Illumina 

Japanese 1,069 904 312,712 Illumina 

Table 5. Summary of Intracranial Aneurysm (IA) dataset.  
 

•  In both datasets, each SNP’s genotypic p-value of 
association is calculated via Cochran-Armitage 
trend test. 

•  Using P<0.05 cutoff: 
•  44,351 SNPs were included for EU population, 
•  14,034 SNPs were included for JP population. 



P-values 	
   Rank 	
  

# of 	
  
Associated 
SNPs in 
GWAS	
  
 	
  

 	
  
# of 	
  
Commo
n SNPs 
in 
GWAS	
  

 	
  
# of SNP 
Targeted 
Genes 
(STGs)	
  

 	
  
# of 
Com-
mon 
STGs	
  
 	
  

% Common 
Genes in Both 
Populations	
  
 	
  

Common 
SNPs in 
GWAS	
  KEGG Term	
   EU	
   JP	
   EU	
   JP	
   EU	
   JP	
   EU	
   JP	
   EU	
   JP	
  

MAPK signaling 
pathway *	
   3.53E-27	
   2.70E-18	
   1	
   8	
   133	
   43	
  

1	
  
14	
   18	
   2	
   14.29	
   11.11	
   rs791062	
  

Cell cycle	
   2.35E-25	
   2.81E-19	
   2	
   4	
   76	
   18	
  
1	
  

11	
   10	
   2	
   18.18	
   20	
   rs744910	
  

TGF-beta signaling 
pathway *	
   6.26E-24	
   2.41E-17	
   3	
   9	
   126	
   20	
  

 
3	
  

15	
   9	
   5	
   33.33	
   55.56	
  

rs2053423. 
rs1440375. 
rs744910	
  

ErbB signaling 
pathway	
   9.52E-22	
   2.47E-15	
   4	
   16	
   50	
   15	
  

0	
  
6	
   4	
   0	
   0	
   0	
  

Focal adhesion *	
   9.55E-22	
   5.60E-21	
   5	
   2	
   117	
   45	
  
1	
  

21	
   14	
   5	
   23.81	
   35.71	
   rs4678167	
  

Proteasome	
   2.36E-21	
   4.55E-11	
   6	
   35	
   32	
   1	
  
0	
  

6	
   1	
   0	
   0	
   0	
  
Adherens 
junction*	
   4.91E-19	
   2.58E-21	
   7	
   1	
   85	
   34	
  

1	
  
13	
   11	
   2	
   15.38	
   18.18	
   rs1561798	
  

Notch signaling 
pathway	
   2.14E-18	
   4.74E-12	
   8	
   31	
   26	
   13	
  

0	
  
8	
   4	
   1	
   12.5	
   25	
  

Regulation of actin 
cytoskeleton *	
   2.28E-18	
   4.05E-17	
   9	
   10	
   102	
   36	
  

 
1	
   18	
   14	
   1	
   5.556	
   7.143	
   rs4678167	
  

Neurotrophin 
signaling pathway	
   2.49E-18	
   1.93E-18	
   10	
   7	
   68	
   14	
  

 
0	
   7	
   7	
   1	
   14.29	
   14.29	
  

Table 6. The top 10 KEGG pathways identified for both populations in IA. 7 out of the top 10 pathways, 
identified in both populations are shown in red.  

B. Bakir-Gungor, O.U. Sezerman, “The Identification of Pathway Markers in Intracranial Aneurysm Using 
Genome-wide Association Data from Two Different Populations”, 2013, PLoS ONE, 8(3): e57022.  



P-values 	
   Rank 	
  

# of 	
  
Associated 
SNPs in 
GWAS	
  
 	
  

 	
  
# of 	
  
Commo
n SNPs 
in 
GWAS	
  

 	
  
# of SNP 
Targeted 
Genes 
(STGs)	
  

 	
  
# of 
Com-
mon 
STGs	
  
 	
  

% Common 
Genes in Both 
Populations	
  
 	
  

Common 
SNPs in 
GWAS	
  KEGG Term	
   EU	
   JP	
   EU	
   JP	
   EU	
   JP	
   EU	
   JP	
   EU	
   JP	
  

MAPK signaling 
pathway *	
   3.53E-27	
   2.70E-18	
   1	
   8	
   133	
   43	
  

1	
  
14	
   18	
   2	
   14.29	
   11.11	
   rs791062	
  

Cell cycle	
   2.35E-25	
   2.81E-19	
   2	
   4	
   76	
   18	
  
1	
  

11	
   10	
   2	
   18.18	
   20	
   rs744910	
  

TGF-beta signaling 
pathway *	
   6.26E-24	
   2.41E-17	
   3	
   9	
   126	
   20	
  

 
3	
  

15	
   9	
   5	
   33.33	
   55.56	
  

rs2053423. 
rs1440375. 
rs744910	
  

ErbB signaling 
pathway	
   9.52E-22	
   2.47E-15	
   4	
   16	
   50	
   15	
  

0	
  
6	
   4	
   0	
   0	
   0	
  

Focal adhesion *	
   9.55E-22	
   5.60E-21	
   5	
   2	
   117	
   45	
  
1	
  

21	
   14	
   5	
   23.81	
   35.71	
   rs4678167	
  

Proteasome	
   2.36E-21	
   4.55E-11	
   6	
   35	
   32	
   1	
  
0	
  

6	
   1	
   0	
   0	
   0	
  
Adherens 
junction*	
   4.91E-19	
   2.58E-21	
   7	
   1	
   85	
   34	
  

1	
  
13	
   11	
   2	
   15.38	
   18.18	
   rs1561798	
  

Notch signaling 
pathway	
   2.14E-18	
   4.74E-12	
   8	
   31	
   26	
   13	
  

0	
  
8	
   4	
   1	
   12.5	
   25	
  

Regulation of actin 
cytoskeleton *	
   2.28E-18	
   4.05E-17	
   9	
   10	
   102	
   36	
  

 
1	
   18	
   14	
   1	
   5.556	
   7.143	
   rs4678167	
  

Neurotrophin 
signaling pathway	
   2.49E-18	
   1.93E-18	
   10	
   7	
   68	
   14	
  

 
0	
   7	
   7	
   1	
   14.29	
   14.29	
  

Table 6. The top 10 KEGG pathways identified for both populations in IA. 7 out of the top 10 pathways, 
identified in both populations are shown in red.  

B. Bakir-Gungor, O.U. Sezerman, “The Identification of Pathway Markers in Intracranial Aneurysm Using 
Genome-wide Association Data from Two Different Populations”, 2013, PLoS ONE, 8(3): e57022.  

EU population JP population 

# of SNP Targeted Genes in Top 10 Pathways  

62 15 51 

EU population JP population 

# of SNPs from GWAS in Top 10 Pathways  

724 6 195 7 



Figure 11. KEGG pathway map for MAPK signaling pathway. The set of genes shown in blue includes genes 
that are found for EU dataset; yellow includes genes that are found for JP dataset; red includes genes that 
are found both by EU and JP GWAS of IA. 

 
 

Found in EU popln. 
 

Found in JP popln. 
 

Found both in EU 
and JP poplns. 



Insights 
•  Via applying PANOGA on two aneurysm GWASs, 

conduc ted on European and Japanese 
populations, we have shown that 7 of the top 10 
affected pathways are common between these 
two populations. 

•  The probability of getting 7 common pathways 
out of randomly selected 10 pathways from 
existing 246 human KEGG pathways is 2.24E-39. 

•  The relation between these pathways and the IA 
is supported by previous studies in literature.  

•  Although different SNP targeted genes are 
affected on each population, these genes map to 
the same pathways among different populations 
(Bakir-Gungor and Sezerman, 2012).  



Table 7. The top 20 over-represented KEGG pathways identified for gene expression data of IA. Pathways 
shown in red are identified in top 20 lists of at least two studies.  
* Pathway found to be associated with aneurysm related diseases in KEGG Disease Pathways Database. 

KEGG	
  Term	
  P-­‐values	
  Corrected	
  with	
  
Bonferroni	
   Rankings	
  

KEGG	
  Term	
  
Gene	
  
Expression	
   GWAS	
  EU	
   GWAS	
  JP	
  

Gene	
  
Expression	
  

GWAS	
  
EU	
   GWAS	
  JP	
  

Ribosome	
   7.91E-23	
   1.40E-08	
   5.93E-19	
   1	
   73	
   5	
  
Spliceosome	
   7.40E-17	
   2.05E-13	
   4.72E-13	
   2	
   33	
   27	
  
RNA transport	
   3.97E-14	
   6.26E-09	
   -	
   3	
   69	
   -	
  
Complement and coagulation cascades	
   6.05E-13	
   7.00E-14	
   1.06E-09	
   4	
   31	
   48	
  

T cell receptor signaling pathway	
   7.86E-12	
   1.62E-16	
   1.97E-15	
   5	
   17	
   15	
  
ErbB signaling pathway	
   5.70E-09	
   9.52E-22	
   2.47E-15	
   6	
   4	
   16	
  
Chronic myeloid leukemia	
   6.70E-09	
   2.62E-18	
   8.13E-11	
   7	
   11	
   36	
  
Natural killer cell mediated cytotoxicity	
   9.96E-09	
   2.56E-07	
   1.29E-09	
   8	
   81	
   50	
  
RNA degradation	
   1.44E-08	
   3.44E-11	
   1.66E-07	
   9	
   44	
   67	
  
Osteoclast differentiation	
   1.45E-08	
   8.12E-15	
   4.97E-10	
   10	
   26	
   43	
  
Neurotrophin signaling pathway	
   6.68E-08	
   2.49E-18	
   1.92E-18	
   11	
   10	
   7	
  
Adherens junction *	
   1.74E-07	
   4.91E-19	
   2.58E-21	
   12	
   7	
   1	
  
mRNA surveillance pathway	
   3.59E-07	
   -	
   -	
   13	
   -	
   -	
  
Pyruvate metabolism	
   1.87E-06	
   -	
   5.82E-05	
   14	
   -	
   92	
  

Toll-like receptor signaling pathway	
   3.26E-06	
   9.18E-13	
   1.50E-10	
   15	
   35	
   38	
  
Small cell lung cancer	
   3.55E-06	
   -	
   1.01E-08	
   16	
   -	
   55	
  
Proteasome	
   4.19E-06	
   2.35E-21	
   4.54E-11	
   17	
   6	
   35	
  
Focal adhesion *	
   8.57E-06	
   9.55E-22	
   5.60E-21	
   18	
   5	
   2	
  
Fc gamma R-mediated phagocytosis	
   1.47E-05	
   4.00E-09	
   1.32E-13	
   19	
   66	
   22	
  
Toxoplasmosis	
   2.68E-05	
   1.06E-08	
   -	
   20	
   72	
   -	
  

Analysis of IA transcriptomics data using PANOGA 



Figure 12. KEGG pathway map for TGF-beta signaling pathway. The shade of red color in genes map to the 
number of targeted SNPs per base pair of the gene. Blue border indicates that the gene is found to be 
differentially expressed.   

 
 



Behçet’s disease 
•  A chronic systemic disease, characterized by recurrent 

inflammatory attacks affecting multiple organs. 

•  Widespread in countries along the ancient silk route from 
Japan to the Middle East and the Mediterranean. 

•  Known variants account for less than 20% of the genetic 
risk.  

http://excellence-in-
rheumatology.org/sites/
default/files/presentations/
GUL.pdf 

Figure 13. Behcet’s Disease 



Behcet’s disease dataset from two different 
populations 

Population # of 
Cases 

# of 
Controls 

# of 
genotyped 
SNPs 

Platform 

Turkish 1,215 1,278   311,459   Illumina, Infinium 
assay  

Japanese 612 740 500,568  Affymetrix Gene 
Chip Human 
Mapping 500K 

Table 8. Summary of  Behcet’s disease dataset.  
 

•  In both datasets, each SNP’s genotypic p-value of 
association is calculated via calculated via allelic 
chi-squared test. 

•  Using P<0.05 cutoff: 
•  18,479 SNPs were included for TR population, 
•  20,594 SNPs were included for JP population. 





Table 9. The top 10 KEGG pathways identified for both populations in Behcet’s disease. 6 out of the top 10 
pathways, identified in both populations are shown in red. 

P-values  Rank  

# of  
Associated 
SNPs in 
GWAS 
  

  
# of SNP 
Targeted 
Genes 
(STGs) 

  
# of 
Com-
mon 
STGs 
  

   
% Common 
Genes in Both 
Populations 
  

Is Common 
Genes more 
than 50% in 

any 
population? KEGG Term TR JP TR JP TR JP TR JP TR JP 

Focal adhesion 9,92E-27 9.47E-23 1 2 102 131 29 24 8 27.58 33.33 N 
MAPK signaling 
pathway 2,05E-23 2.14E-17 2 6 72 121 20 27 4 19.99 14.81 N 
Jak-STAT signaling 
pathway 3,68E-21 6.36E-14 3 17 49 68 20 14 6 29.99 42.85 N 
TGF-beta signaling 
pathway 4,05E-21 1.87E-21 4 3 43 71 15 16 12 79.99 74.99 Y 
ECM-receptor 
interaction 1,43E-20 1.26E-18 5 5 56 49 18 15 9 49.99 59.99 Y 

Axon guidance 7,68E-19 5.02E-7 6 74 49 99 11 15 2 18.18 13.33 N 
Complement and 
coagulation cascades 1,00E-18 2.35E-16 7 10 22 29 10 8 3 29.99 37.49 N 
Antigen processing and 
presentation 1,79E-18 1.37E-9 8 43 161 53 14 10 7 49.99 69.99 Y 

Proteasome 1,97E-18 1.34E-24 9 1 17 9 4 6 1 24.99 16.66 N 
Autoimmune thyroid 
disease 5,75E-18 7.15E-7 10 76 162 44 15 8 6 39.99 74.99 Y 

B. Bakir-Gungor, et. al., "Identification of Possible Pathogenic Pathways in Behçet’s Disease Using Genome-wide 
Association Study Data from Two Different Populations”, 2015, Eur. Journal of Human Genetics, 23(5):678-87. 



Table 9. The top 10 KEGG pathways identified for both populations in Behcet’s disease. 6 out of the top 10 
pathways, identified in both populations are shown in red. 

P-values  Rank  

# of  
Associated 
SNPs in 
GWAS 
  

  
# of SNP 
Targeted 
Genes 
(STGs) 

  
# of 
Com-
mon 
STGs 
  

   
% Common 
Genes in Both 
Populations 
  

Is Common 
Genes more 
than 50% in 

any 
population? KEGG Term TR JP TR JP TR JP TR JP TR JP 

Focal adhesion 9,92E-27 9.47E-23 1 2 102 131 29 24 8 27.58 33.33 N 
MAPK signaling 
pathway 2,05E-23 2.14E-17 2 6 72 121 20 27 4 19.99 14.81 N 
Jak-STAT signaling 
pathway 3,68E-21 6.36E-14 3 17 49 68 20 14 6 29.99 42.85 N 
TGF-beta signaling 
pathway 4,05E-21 1.87E-21 4 3 43 71 15 16 12 79.99 74.99 Y 
ECM-receptor 
interaction 1,43E-20 1.26E-18 5 5 56 49 18 15 9 49.99 59.99 Y 

Axon guidance 7,68E-19 5.02E-7 6 74 49 99 11 15 2 18.18 13.33 N 
Complement and 
coagulation cascades 1,00E-18 2.35E-16 7 10 22 29 10 8 3 29.99 37.49 N 
Antigen processing and 
presentation 1,79E-18 1.37E-9 8 43 161 53 14 10 7 49.99 69.99 Y 

Proteasome 1,97E-18 1.34E-24 9 1 17 9 4 6 1 24.99 16.66 N 
Autoimmune thyroid 
disease 5,75E-18 7.15E-7 10 76 162 44 15 8 6 39.99 74.99 Y 
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Figure 14. KEGG pathway map for complement and coagulation pathway. The set of genes shown in blue includes genes that 
are found for TR dataset; yellow includes genes that are found for JP dataset; red includes genes that are found both by TR 
and JP GWAS of BD. 



pathfindR- Pathway Enrichment Analysis 
Utilizing Active Subnetworks 

Ulgen E, Ozisik O, Sezerman O.U, pathfindR- An R Package for Pathway 
Enrichment Analysis Utilizing Active Subnetworks. BioRxiv., 2018. 





Insights 
•  On Behçet’s disease datasets, the identified 

pathways between two populations show more 
commonality than individual genes or SNPs. 
(the probability of getting 6 out of top 10 
pathways from existing 246 human KEGG 
pathways is 2.44E-36). 

•  The pathways are critical to elucidate the 
mechanisms underlying diseases and show 
higher conservation within and across 
populations.  

•  Each individual has a unique combination of 
factors involved in disease development 
mechanism. 

•  But, most of the targeted pathways that need to 
be altered by these factors are expected to be  
the same.  



Contributions 

•  “Fortunately, a portion of the unaccounted 85 to 
90% disease variation lies hidden in GWAS 
datasets but can be revealed using NEW 
strategies.” (Schadt et al, Science Translational 
Medicine). 

•  For GWAS analysis of complex diseases, novel 
disease-susceptibility genes and mechanisms can 
only be identified by looking beyond the tip of the 
iceberg (the most significant SNPs/genes). 

•  Our results show that incorporating SNP 
functional properties, protein-protein interaction 
networks into GWAS can dissect leading 
molecular pathways, which cannot be picked up 
using traditional analyses. 



pathfindR- Pathway Enrichment Analysis 
Utilizing Active Subnetworks 

Ulgen E, Ozisik O, Sezerman O.U, pathfindR- An R Package for Pathway 
Enrichment Analysis Utilizing Active Subnetworks. BioRxiv., 2018. 



Integrative analysis of transcriptomics and 
epigenomics data using PANOGA 



Summary 

•  “Therapeutics of the future likely will be designed via keeping 
cellular networks and pathways in mind.“ (Collins et al, 
Science Translational Medicine). 

•  In complex diseases, while individual  SNPs/genes are not 
shared by most of the patients, pathways show more 
commonality, especially across populations. 

•  We introduced pathway marker concept to the literature, 
which explains universal disease development mechanism.  

•  As a potential application, each population may search for 
disease causing factors targeting the genes within these 
marker pathways.  



Summary 

•  Pathway markers can also be extended to individual level to 
identify modifications occurring on the genes within these 
pathways. 

•  To understand individual disease development mechanisms, 
marker pathways can be scanned for an individual for 
alterations in the functions of the genes contained within.  

•  Thus, determining the disease-causing factors will provide a 
valuable insight for personalized therapy targets that would 
rectify the impact of these function altering factors. 
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Yugi K., et. al, “Trans-Omics: How To Reconstruct Biochemical Networks Across Multiple 'Omic' Layers.”, Trends Biotechnol. 
2016 Apr;34(4):276-290.  



Multidimensional -omics Data 
Integration Methods 

Arneson D, et. al, “Multidimensional Integrative Genomics Approaches to Dissecting Cardiovascular Disease”, 2017, Front 
Cardiovasc Med. 2017 Feb 27;4:8.  



Multidimensional -omics Data 
Integration Methods 

Arneson D, et. al, “Multidimensional Integrative Genomics Approaches to Dissecting Cardiovascular Disease”, 2017, Front 
Cardiovasc Med. 2017 Feb 27;4:8.  



Conclusions 

 
•  PANOGA (Pathway and Network-Oriented GWAS Analysis) combines 

nominally significant evidence of genetic association with current 
knowledge of biochemical pathways, protein–protein interaction 
networks, and functional information of selected single nucleotide 
polymorphisms (SNP). 

•  With its multifactorial basis, we have shown on four complex diseases 
that PANOGA has a good potential to decipher the combination of 
biological processes underlying the disease.  



Conclusions 

 
•  Via comparing GWASs of two different populations, we have shown 

that the few SNPs that are identified in GWAS and their associated 
genes are mostly targeting the same pathway combinations, and these 
biological pathways show higher conservation across populations. 

•  If the combination of these pathways does not function properly, a 
specific disease may develop.  

•  Although PANOGA is originally developed to identify disease-
associated pathways via further analyzing GWAS data, later it is shown 
to work well on different -omics datasets.  



Conclusions 

 
•  Using different –omics datasets, our group is currently working on the 

development of methodologies to extend this approach to individual 
level to identify specific modifications occurring on the genes within 
these identified pathways.  

•  Dissecting the individual disease development mechanisms will 
provide a valuable insight for discovering individualized therapy targets 
and will pave the way towards personalized medicine applications. 

•  This approach would enable biomedical researchers to identify 
affected pathways and function-altering factors within these pathways. 

•  For diagnostic purposes, the identification of the disease-related 
pathways is also instrumental in the determination of biomarkers at 
different levels (e.g., SNPs, gene expression levels, protein levels in 
serum, miRNA levels, metabolite concentration). 
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