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Background

e The main goal of human genetics is to
understand the inherited basis of human
variation in phenotypes, elucidating human
physiology and disease.

e Extensive studies are currently being
performed to associate disease susceptibility
with genetic variations, such as single
nucleotide polymorphisms (SNPs).

e Genome-wide association studies (GWAS)
emerged as a major tool to identify disease
susceptibility loci and have been successful in
detecting the association of a number of SNPs
with complex diseases.




Genome-wide association studies (GWAS)
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Figure 1. Genome-wide association studies (GWAS)
Excerpted from Genomewide Association Studies and Assessment of the Risk of Disease,

Manolio TA. N Engl J Med 2010;363:166-176.



Motivation for pathway and network oriented
analysis of GWAS

e Testing only for association of a single
SNP is insufficient to dissect the complex
genetic structure of common diseases.

e Extracting biological insight from GWAS
and understanding the principles
underlying the complex phenomena that
take place on various biological pathways
remain a major challenge.

e Recent studies have shown that the full
potential of GWAS can only be achieved
by integrating pathway and network
based analysis.




Pathway and Network Oriented GWAS
Analysis (PANOGA)

e Developed a novel methodology to
Associate SNPs with Human Diseases

According to Their Pathway Related
Context.

e In this methodology, we incorporated
SNP functional properties, protein-protein
interaction networks, pathway
classification tools into GWAS.

e Hence, leading molecular pathways,
which cannot be picked up using
traditional analyses were identified.




Our Methodology (PANOGA)
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B. Bakir-Gungor, O.U. Sezerman, “A New Methodology to Associate SNPs with Human Diseases
According to Their Pathway Related Context’, 2011, PLoS ONE, 6(10): e26277.




SNP Functionalization

Functional Category Tool Description Meta-tool

SNP annotation tool, Impact of nsSNPs on protein function,
LS-SNP, SNPs3D, SIFT, Prediction of amino acid substitution effects, SNP

Protein Coding SNPeffect annotation with human disease F-SNP
SPOT,
Protein Coding PolyPhen Prediction of amino acid substitution effects F-SNP

Protein Coding,
Splicing Regulation, Extensive genomic database including SNPs
Transcriptional Regulation Ensembl and gene transcripts F-SNP

Exonic splice sites, Exonic-splicing regulatory (ESR)

ESEfinder, ESRSearch, sequences, Exon splicing enhancers/silencers, Exonic splice
Splicing Regulation PESX, RescueESE sites F-SNP
Consite Conserved transcription factor binding sites,
Transcriptional Regulation TFSearch Transcription factor binding sites F-SNP
Transcriptional Regulation SNPnexus Conserved transcription factor binding sites SNPnexus
Transcriptional Regulation,
Conserved Region GoldenPath MicroRNA, cpglslands, evolutionary conserved regions F-SNP
Conserved Region ECRBase Evolutionary conserved regions SPOT
KinasePhos, OGPET, Phosphorylation sites, Prediction of O-glycosylation sites in
Post-translation Sulfinator proteins, Tyrosine sulfination sites F-SNP
Genomic Coordinates dbSNP General SNP/gene transcript properties SPOT

Extensive genomic database including SNPs and gene

Genomic Coordinates UCSC transcripts F-SNP
Dense genotyping on multiple populations, useful for LD
HapMap, estimates
LD estimation Haploview Estimation of r2 LD coefficients for each population SPOT

B. Bakir-Gungor, O.U. Sezerman, “A New Methodology to Associate SNPs with Human Diseases
According to Their Pathway Related Context’, 2011, PLoS ONE, 6(10): e26277.




Our Methodology (ctd.)

e SNP-wise weighted p-value calculation:

— Combines functional, genomic information of a
SNP with genotypic p-values of association for
each tested SNP (P, =P/10F5)

e Assigning SNPs to genes:

— Considering all known SNP/gene transcript
associations, the gene with the highest priority
is chosen.

e Active sub-network searches

- By using the gene-wise weighted p-values,
active sub-networks are found in the human PPI
network.

e Functional Enrichment of Sub-networks

— Evaluate whether the identified sub-networks
are biologically meaningful.




Rheumatoid Arthritis (RA)

e A chronic, systemic inflammatory disorder that
usually affects joints.

o éROUt 1% of the world's population is affected by

° Kpown variants explain ~20% of the genetic burden
of RA.

e Additional variations remain to be discovered.

Figure 3. Rheumatoid Arthritis

http://rheumatoidarthritismedicati
onss.com/Rheumatoid-Arthritis.jpg




Rheumatoid Arthritis (RA) dataset

e Wellcome Trust Case Control Consortium (WTCCC)
dataset

# of # of # of genotyped Platform

Cases Controls SNPs

1,999 | 3,004 500,475 Affymetrix
GeneChip

Human Mapping
9500 K Array Set

Table 1. Summary of Rheumatoid Arthritis (RA)dataset.

e 25,027 SNPs were included with P<0.05.



Our Methodology (PANOGA)
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B. Bakir-Gungor, O.U. Sezerman, “A New Methodology to Associate SNPs with Human Diseases
According to Their Pathway Related Context’, 2011, PLoS ONE, 6(10): e26277.




Mapping to Human PPl network
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Figure 2. a. Human PPI network including 10,174 nodes and 61,070 edges. b. Zoomed in view of the
human PPI network. 25,027 SNPs from RA GWAS dataset are assigned to 4,094 genes (shown in

yellow).

B. Bakir-Gungor, O.U. Sezerman, “A New Methodology to Associate SNPs with Human Diseases According to Their
Pathway Related Context’, 2011, PLoS ONE, 6(10): e26277.



Our Methodology (PANOGA)
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B. Bakir-Gungor, O.U. Sezerman, “A New Methodology to Associate SNPs with Human Diseases
According to Their Pathway Related Context’, 2011, PLoS ONE, 6(10): e26277.
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Figure 3. a. The highest scoring sub-network is composed of 275 nodes and 778
edges (as found in active sub-network search step). Node size is shown as
proportional to the degree of a node. b. 20 genes known in literature as associated

with RA are shown in green.

B. Bakir-Gungor, O.U. Sezerman, “A New Methodology to Associate SNPs with Human Diseases
According to Their Pathway Related Context’, 2011, PLoS ONE, 6(10): e26277.
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Figure 4. a. Node degree distribution of the highest scoring sub-network follows a power-law (P(k)=ax-y,
a= 120.03, y=1.353, R?=0.773, Correlation= 0.891 in log log scale), showing that our network displays
scale-free properties, as expected from a biological network. b. Node degree distribution of a same sized

random network, obtained using Erdos-Renyi algorithm.

B. Bakir-Gungor, O.U. Sezerman, “A New Methodology to Associate SNPs with Human Diseases According to Their

Pathway Related Context’, 2011, PLoS ONE, 6(10): e26277.



Our Methodology (PANOGA)

GWAS results (SNPrs ids vs. p-values)
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B. Bakir-Gungor, O.U. Sezerman, “A New Methodology to Associate SNPs with Human Diseases
According to Their Pathway Related Context’, 2011, PLoS ONE, 6(10): e26277.




Comparative Pathway Enrichment Results of RA

Number of Genes Found T
erm
PANOGA | PANOGA Pvalue
KEGG Term Baran- | Martin [ Wu | Zhang (only (w/ Corrected
zini et.al. etal | etal. GWAS regional Bonfer-
et.al. pvalues) | scores) roni

Focaladhesion 0 0 36 32 22 30| 9.33E-11
ErbB signaling pathway 0 0f 23 0 18 20) 2,13E-10
Tight junction 0 0 0 5 20 22| 1.80E-08
Chemokine signaling pathway 0 0 0 0 24 26| 2.31E-08
Adherensjunction 0 0 0 18 16 17] 1,16E-07
Bactenalinvasion of epithelial
cells 0 0 0 0 15 16| 1,57E-007
Neurotrophin signaling pathway 0 0 0 20 20| 2.36E-07
Long-term potentiation 0 22 0 7 14 15| 3,67E-07
Pathwaysin cancer 0 0 0 0 29 32| 1.12E-06
Chronic myeloid leukemia < 0] 21 18 10 14 144E-06
Cell adhesionmolecules
(CAMs) 8 26 0 10 12 18 142E-05
Leukocyte transendothelial
migration 0 24| 14 0 17 17| 1,72E-05
T cell receptor signaling
pathway - 21 16 16 13 16| 2.70E-05
Toll-like receptor signaling Computationa|
pathway 0 0] 22 6 7 13 197E-03| | e s
Antigen processing and verification
presentation 6 0 0 3 11 11| 2,08E-03 .
Allograft rejection 0 o o 0 8 8| 2.16E-03 Experimental
MAPK signaling pathway 0 0| 43 34 16 2 6.13E-03 verification
Type I diabetes mellitus 5 0 0 1 8 8] 6,24E-03
Apoptosis 0 18 12 11 6 11| 6,284E-03 Computational
Jak-STAT signaling pathway 0 25 0 16 13 15 .-’,4113-03 . and
Prostate cancer 0 0 22 0 10 11| 35.04E-02 .
Calcium signaling pathway 0 3500 4 15 16| 1,63E-01 Experimental
VEGF signaling pathway 3 of 15 13 8 9| 2.71E-01 verification

Table 2. Comparison of found KEGG pathways with previous studies in terms of number of genes associated
within each KEGG term. Blue denotes computationally found pathways, green denotes experimentally
verified RA associated pathways, and red denotes both experimental and computational verification.
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Figure 5. a. Functionally grouped annotation network of our highest scoring sub-network. The relationships between
the KEGG terms (nodes) were based on the similarity of their associated genes. The size of the nodes reflected the
statistical significance of the terms (term p-values corrected with Bonferroni). Edges represent the existence of shared
genes. The thickness of the edges is proportional to the number of genes shared and calculated using kappa statistics.
The grouped terms (according to their kappa scores) were shown in same color. b. Zoomed in view of the functional
annotation network. The most significant pathway term of the group with the lowest term p-value (the group leading term)

was shown in bold using the group specific color.



Comparative Evaluation of RA Associated Pathways
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Figure 6. Comparison of KEGG pathway terms with literature verified RA genes/our gene set were shown in
green/red, respectively. Nodes represent the identified pathway terms from any one of the two sets. The color
gradient showed the gene proportion of each set associated with the term. White color represented equal
proportions from the two comparison sets. The size of the nodes reflected the statistical significance of the
terms (term p-values corrected with Bonferroni). Edges represented the existence of the shared genes
between the pathway terms and node border colors mapped to the group colors.



Insights

e We present PANOGA, pathway and network
oriented GWAS analysis, that challenges to
identify disease associated KEGG pathways by
combining nominally significant evidence of
genetic association with current knowledge of
biochemical pathways, protein-protein interaction
networks, and functional information of selected
SNPs.

e We identified both previously known and
additional KEGG pathways as associated with RA.

B. Bakir-Gungor, O.U. Sezerman, “A New Methodology to Associate SNPs with Human Diseases
According to Their Pathway Related Context’, 2011, PLoS ONE, 6(10): e26277.




Insights (ctd.)

e The KEGG functional enrichment of the RA
specific drug target genes included these
additionally found pathway terms.

e Among the previously known pathways, we
identified additional genes as associated with RA.

e Using our highest scoring sub-network, we
generated functionally grouped pathway network
of RA.

B. Bakir-Gungor, O.U. Sezerman, “A New Methodology to Associate SNPs with Human Diseases
According to Their Pathway Related Context’, 2011, PLoS ONE, 6(10): e26277.




Improvements in the methodology

e Instead of focusing only on the highest scoring
sub-network, the functional enrichments of the
generated sub-networks are combined.

e The SNPs in the affected genes and pathways are
identified.

e Pathway and gene based presentation options.

e The effect of the overlap between sub-networks is
evaluated.




Overview of the PANOGA protocol
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Insights

PANOGA protocol represents a feasible solution
for the identification of pathway markers to
bridge the gap between GWAS and biological
mechanisms of complex diseases (Bakir-Gungor
and Sezerman, 2012).

Since our method can be easily applied to GWAS
datasets of other diseases, it will facilitate the
identification of disease specific pathway
combinations.

Due to its modular design pattern, PANOGA
protocol gives flexibility to the user.



Overview of the
PANOGA Web-server

To present the geneticists a
fully automated option, we
implemented PANOGA as a
web-server.

B. Bakir-Gungor, E. Egemen, O.U. Sezerman,
‘PANOGA: a web-server for identification of
SNP targeted pathways from genome-wide
association study data’, 2014, Bioinformatics,
30(9): 1287-12809.

Overview of the PANOGA web-server
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PANOGA: a web server for
identification of SNP-
targeted pathways from
genome-wide association
study data

Fig. 7. A snapshot of the web server input (A) and
results page (B). A link from the results page for
customized KEGG pathway maps opens the zoomed-in
version for visual display (C). The shade of red color in
genes indicates the number of targeted SNPs (typed in
the GWAS of disease) per base pair of the gene. Red
refers to the highest targeted gene, whereas white
refers to a gene product not targeted by the SNPs.
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study data”, 2014, Bioinformatics, 30(9):

1287-12809.



e Epilepsy is a abnormal discharge. Characterized by

recurrent and spontaneous seizures.

e Common neurologic disorder that affects around 1% of the
world population, including one in 200 children.

J Ibn partial epilepsy (PE), seizure affects only one part of the
rain.

e It can run in families.
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Figure 13: Partial Epilepsy
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Partial Epilepsy Dataset

# of # of # of genotyped Platform

Cases Controls SNPs

3,445 |6,935 528,745 SNPs | lllumina, Human610-
Quadv1 genotyping chips

Table 3. Summary of Partial Epilepsy (PE) dataset.

e Cochran—-Mantel-Haenszel test results were used
as the genotypic p-values of the identified SNPs.

e Using P<0.05 cutoff:
e 28,450 SNPs were included.




Term Pvalue | Wang et GWAS on |CNV Study on| Candidate Rogic et al.
KEGG Term Corr Bonf | al. Study | OMIM PE Epilepsy Gene List | EpiGAD Study

Complement and coagulation

cascades 2,16E-025] - Y - - - Y
Cell cycle 1,03E-024]- Y - - - Y
Focal adhesion 7,10E-023]Y Y Y - - Y
ECM-receptor interaction 1,62E-022]Y Y - - - Y
Jak-STAT signaling pathway 1,16E-021]Y Y - - - Y
MAPK signaling pathway 2,32E-019]Y Y Y - Y Y Y
Proteasome 1,15E-018]- - - - - -
Ribosome 1,57E-018]- - - - - Y
Calcium signaling pathway 5,73E-018]Y Y Y Y Y Y Y
Regulation of actin cytoskeleton 9.23E-018]Y Y - Y - Y
Adherens junction 1,01E-017]- - Y - - Y
Pathways in cancer 3.94E-017]Y Y Y - - Y
Gap junction 6,32E-017]Y Y Y - Y
Apoptosis 3,72E-016]Y Y - - - Y
Long-term depression 2,90E-015]Y Y Y Y Y Y Y
Axon guidance 4,01E-015]- - - - - Y
Fc eamma R-mediated phagocytosis 2,22E-014]Y Y Y Y - Y
Tight junction 2,82E-014]Y Y Y - - Y
ErbB signaling pathway 4,04E-014|Y Y Y - - Y
Wnt signaling pathway 6,28E-014]Y Y Y - Y - Y
Chemokine signaling pathway 9,60E-014]Y - Y Y - Y
GnRH signaling pathway 1,22E-013]Y Y Y - - Y
Pentose phosphate pathway 1,29E-013]- - - - - -
Long-term potentiation 2,28E-013]Y Y Y - Y - Y
Neurotrophin signaling pathway 3,24E-013]Y Y - - - Y
Glycolysis / Gluconeogenesis 4,29E-013]Y Y - - - Y
Notch signaling pathway 9.33E-013]- - - - - -
Dilated cardiomyopathy 1,40E-012]- Y Y - Y - Y
TGF-beta signaling pathway 2,32E-012]- - - - - Y

Table 4. Comparison of the top 30 SNP-targeted pathways with the pathways of the known genes, as
associated to PE. Red color indicates pathway is found in at least 3 studies.
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Figure 8. The complement and coagulation cascade (a) Up and down-regulated genes are shown in red and
in blue, respectively, as a result of microarray analysis for epilepsy-associated gangliogliomas. (b) The shade
of red color in genes indicates the number of GWAS targeted SNPs per base pair of the gene. Red refers to
the highest targeted gene, whereas white refers to a gene product, not targeted by the SNPs.

B. Bakir-Gungor, et. al., "The ldentification of SNP Targeted Pathways in Partial Epilepsies Using Genome-
wide Association Data”, 2013, Epilepsy Research, 105(1-2):92-102.
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Figure 9. Functionally grouped annotation network of the identified pathways for epilepsy dataset. The
pathways are grouped based on the similarity of their SNP targeted genes.

B. Bakir-Gungor, et. al., "The ldentification of SNP Targeted Pathways in Partial Epilepsies Using Genome-
wide Association Data”, 2013, Epilepsy Research, 105(1-2):92-102.



Insights

e We showed that PANOGA was able to identify
significant pathways, explaining the pathogenesis
of the epilepsy.

e The relation between these pathways and partial
epilepsies was supported by previous studies in
literature.

e 20 out of the top 30 affected pathways were
found to be common with at least three different
studies, among the seven studies compared.

e Hence, we emphasize the importance of
pathway-oriented analysis to enlighten disease
development mechanisms (Bakir-Gungor, et al.,
2012).




A Two Stage Genetic Algorithm Approach to Active Subnetwork Search
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Figure 10. Binary vector chromosome representation and crossover operation in ActiveSubnetworkGA.
The graph represents the PPl network. Two subnetworks and their offspring are given underneath in
binary vector representation form. Dark cells represent the nodes that are included in the subnetwork.

Vector swapping is applied as the crossover operator.

O. Ozisik, B. Bakir-Gungor, B. Diri, O.U. Sezerman, “Active Subnetwork GA: A Two Stage Genetic Algorithm
Approach to Active Subnetwork Search”, 2017, Current Bioinformatics, 12(4): 320-328(9).




Scoring sub-networks

s [

Significance value p; of each gene is converted to z-score
using equation (1). Here ®~! is the inverse normal cumulative
distribution function.

% :<I>_1(1—pi) (1)

Collective z-score z4 of a subnetwork is calculated by
equation (2)

1
ZAZEZZZ' (2)

It is important to see whether the score 24 is higher than
expected relative to a random set of genes drawn from the same
experimental data. For this purpose, gene sets consisting of &
genes are randomly selected, their z4 scores are calculated,
and mean (uy) and standard deviation (oj) are found. The
corrected subnet score is calculated by equation (3).

ZA — Mk
SA:U—kM (3)

O. Ozisik, B. Bakir-Gungor, B. Diri, O.U. Sezerman, “Active Subnetwork GA: A Two Stage Genetic Algorithm
Approach to Active Subnetwork Search”, 2017, Current Bioinformatics, 12(4): 320-328(9).




Active Sub-network Search Algorithms

2.4. Active Subnetwork Search Algorithms

Currently, there are three algorithms implemented in the pathfindR package for active
subnetwork search: greedy algorithm, simulated annealing algorithm and genetic
algorithm.

2.4.1. Greedy Algorithm

Greedy algorithm is the problem-solving/optimization concept that chooses locally the
best option in each stage with the hope of reaching the global optimum. In active
subnetwork search, this is generally applied by starting with a significant seed node and
considering addition of a neighbor in each step to maximize the subnetwork score. In
pathfindR, we used the approach in Chuang et al.'”: This algorithm considers addition of
a node within a specified distance d to the current subnetwork. In our method maximum
depth from the seed can also be set. With the default parameters, our greedy method
considers addition of direct neighbors (d=1) and forms a subnetwork with a maximum
depth of 1 for each seed. Because the expansion process runs for each significant seed
node, several overlapping subnetworks emerge. In pathfindR, overlapping subnetworks
are handled by discarding a subnetwork that overlaps with a higher scoring subnetwork
more than a threshold, which is set to 0.5 by default.

O. Ozisik, B. Bakir-Gungor, B. Diri, O.U. Sezerman, “Active Subnetwork GA: A Two Stage Genetic Algorithm
Approach to Active Subnetwork Search”, 2017, Current Bioinformatics, 12(4): 320-328(9).




Active Sub-network Search Algorithms

2.4.2. Simulated Annealing Algorithm

Simulated annealing improves the greedy search by accepting non-optimal actions to
Increase exploration in the search space. The probability of accepting a non-optimal
action decreases in each iteration. In active subnetwork search context, the search
begins with a set of randomly chosen genes (that will be referred to as genes in “on”
state), connected components in this candidate solution are found and the scores are
calculated. In each iteration the state of a random node is changed from on to off, vice
versa, connected components are found in the new solution and their scores are
calculated. If the score improves, the change is accepted, if the score decreases, the
change is accepted with a probability proportional to the temperature parameter that
decreases in each steo.

O. Ozisik, B. Bakir-Gungor, B. Diri, O.U. Sezerman, “Active Subnetwork GA: A Two Stage Genetic Algorithm
Approach to Active Subnetwork Search”, 2017, Current Bioinformatics, 12(4): 320-328(9).




Intracranial Aneurysm (l1A)

A cerebrovascular disease that

affects around 1 per 50 people. Carehrsl Aneuysm

e Major public health concern, since
rupture of an IA leads to stroke
and death.

Blood vessels

Cerebral Aneurysm

e To identify IA related genetic
factors, DNA linkage, candidate o
gene, dgenetic association and '
GWAS have been used.

e Four recent GWAS identified some
variants associated with IA, which
collectively explain only 10% of

T ; Figure 16: Intracranial (Cerebral)
the familial risk of IA. Aneurysm http://

www.yalemedicalgroup.org/stw/
images/161464.jpg




Intracranial Aneurysm Datasets
from Two Different Populations

Population # of # of # of Platform
Cases Controls genotyped
SNPs
European |2,780 |12,515 832,000 lllumina
Japanese | 1,069 | 904 312,712 lllumina

Table 5. Summary of Intracranial Aneurysm (IA) dataset.

e In both datasets, each SNP’s genotypic p-value of
association is calculated via Cochran-Armitage

trend test.

e Using P<0.05 cutoff:
e 44,351 SNPs were included for EU population,
e 14,034 SNPs were included for JP population.




# of

Associated |# of #of SNP  |#0of |% Common
SNPs in Commo | Targeted Com- |Genes in Both
GWAS n SNPs | Genes mon Populations Common
P-values Rank in (STGs) STGs SNPs in
KEGG Term EU JP EU |JP |EU [Jp [GWAS [gu [Jp EU__ |JP GWAS
MAPK signaling 1
pathway * 3.53E-27 | 2.70E-18 [ 1 8 [ 133 [ 43 14 18 2 14.29 11.11 _|rs791062
1
Cell cycle 2.35E-25 | 2.81E-19 | 2 4 76 18 11 10 2 18.18 20 15744910
1s2053423.
TGF-beta signaling 3 rs1440375.
pathway * 6.26E-24 | 2.41E-17 | 3 9 [126 ] 20 15 9 5 33.33 55.56 _ [rs744910
ErbB signaling 0
pathway 9.52E-22 | 247E-15 [ 4 | 16 | 50 15 6 4 0 0 0
1
Focal adhesion * 9.55E-22 | 5.60E-21 [ 5 2 | 117 ] 45 21 14 5 23.81 35.71 [rs4678167
0
Proteasome 2.36E-21 | 4.55E-11 6 |35 32 1 6 1 0 0 0
Adherens 1
junction* 491E-19 | 2.58E-21 | 7 1 85 34 13 11 2 15.38 18.18 [rs1561798
Notch signaling 0
pathway 2.14E-18 | 4.74E-12 | 8 | 31 | 26 13 8 4 1 12.5 25
Regulation of actin
cytoskeleton * 2.28E-18 | 4.05E-17 | 9 | 10 [ 102 | 36 1 18 14 1 5.556 | 7.143 |rs4678167
Neurotrophin
signaling pathway | 2.49E-18 | 1.93E-18 | 10 | 7 68 14 0 7 7 1 14.29 14.29

Table 6. The top 10 KEGG pathways identified for both populations in IA. 7 out of the top 10 pathways,

identified in both populations are shown in red.

B. Bakir-Gungor, O.U. Sezerman, “The Identification of Pathway Markers in Intracranial Aneurysm Using
Genome-wide Association Data from Two Different Populations”, 2013, PLoS ONE, 8(3): e57022.




# of
Associated |# of # of SNP # of % Common
SNPs in Commo | Targeted Com- | Genes in Both
GWAS 0 SN D¢ P = s —
P-values Rank
KEGG Term EU JP EU |JP |EU [JP # of SNP Targeted Genes in Top 10 Pathways
MAPK signaling . _
pathway * 3.53627 | 270618 | 1| 8 | 133 | 43 EU population  JP population
Cell cycle 2.35E-25 | 2.81E-19 | 2 4 76 18
TGF-beta signaling
pathway * 6.26E-24 | 2.41E-17 | 3 9 1126 ] 20
ErbB signaling
pathway 9.52E-22 | 247E-15 | 4 | 16 | 50 15
Focal adhesion * 9.55E-22 | 5.60E-21 5 2 | 117 ] 45
# of SNPs from GWAS in Top 10 Pathways
Proteasome 2.36E-21 | 4.55E-11 6 [ 35] 32 1
Adherens EU population JP population
junction* 491E-19 | 2.58E-21 | 7 1 85 34
Notch signaling
pathway 2.14E-18 | 4.74E-12 | 8 [ 31 | 26 13
Regulation of actin
cytoskeleton * 2.28E-18 | 4.05E-17 | 9 [ 10 ] 102 | 36
Neurotrophin
signaling pathway 2.49E-18 1.93E-18 | 10 7 68 14 I —— T T —Tv =]

Table 6. The top 10 KEGG pathways identified for both populations in IA. 7 out of the top 10 pathways,
identified in both populations are shown in red.

B. Bakir-Gungor, O.U. Sezerman, “The Identification of Pathway Markers in Intracranial Aneurysm Using
Genome-wide Association Data from Two Different Populations”, 2013, PLoS ONE, 8(3): e57022.
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Figure 11. KEGG pathway map for MAPK signaling pathway. The set of genes shown in blue includes genes
that are found for EU dataset; yellow includes genes that are found for JP dataset; red includes genes that

are found both by EU and JP GWAS of IA.




Insights

e Via applying PANOGA on two aneurysm GWASs,
conducted on European and Japanese
populations, we have shown that 7 of the top 10
affected pathways are common between these
two populations.

e The probability of getting 7 common pathways
out of randomly selected 10 pathways from
existing 246 human KEGG pathways is 2.24E-3°,

e The relation between these pathways and the IA
is supported by previous studies in literature.

e Although different SNP targeted genes are
affected on each population, these genes map to
the same pathways among different populations
(Bakir-Gungor and Sezerman, 2012).




Analysis of |A transcriptomics data using PANOGA

KEGG Term P-values Corrected with

Bonferroni Rankings

Gene Gene GWAS
KEGG Term Expression GWAS EU GWAS JP Expression EU GWAS JP
Ribosome 7.91E-23|1.40E-08 5.93E-19 1 73 5
Spliceosome 7.40E-17]12.05E-13 4.72E-13 2 33 27
RNA transport 3.97E-14|6.26E-09 - 3 69 -
Complement and coagulation cascades 6.05E-13]|7.00E-14 1.06E-09 4 31 48
T cell receptor signaling pathway 7.86E-1211.62E-16 1.97E-15 5 17 15
ErbB signaling pathway 5.70E-09]9.52E-22 2.47E-15 6 4 16
Chronic myeloid leukemia 6.70E-09]2.62E-18 8.13E-11 7 11 36
Natural killer cell mediated cytotoxicity 9.96E-09|2.56E-07 1.29E-09 8 81 50
RNA degradation 1.44E-08]3.44E-11 1.66E-07 9 44 67
Osteoclast differentiation 1.45E-08]8.12E-15 4.97E-10 10 26 43
Neurotrophin signaling pathway 6.68E-08]2.49E-18 1.92E-18 11 10 7
Adherens junction * 1.74E-07]4.91E-19 2.58E-21 12 7 1
mRNA surveillance pathway 3.59E-07] - - 13 - -
Pyruvate metabolism 1.87E-06] - 5.82E-05 14 - 92
Toll-like receptor signaling pathway 3.26E-06]9.18E-13 1.50E-10 15 35 38
Small cell lung cancer 3.55E-06] - 1.01E-08 16 - 55
Proteasome 4.19E-06{2.35E-21 4.54E-11 17 35
Focal adhesion * 8.57E-06]9.55E-22 5.60E-21 18 5 2
Fc gamma R-mediated phagocytosis 1.47E-05]4.00E-09 1.32E-13 19 66 22
Toxoplasmosis 2.68E-05]1.06E-08 - 20 72 -

Table 7. The top 20 over-represented KEGG pathways identified for gene expression data of IA. Pathways
shown in red are identified in top 20 lists of at least two studies.
* Pathway found to be associated with aneurysm related diseases in KEGG Disease Pathways Database.
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Figure 12. KEGG pathway map for TGF-beta signaling pathway. The shade of red color in genes map to the
number of targeted SNPs per base pair of the gene. Blue border indicates that the gene is found to be
differentially expressed.



Behcet's disease

e A chronic systemic disease, characterized by recurrent
inflammatory attacks affecting multiple organs.

e Widespread in countries along the ancient silk route from
Japan to the Middle East and the Mediterranean.

. K_nlc<)wn variants account for less than 20% of the genetic
risk.
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Figure 13. Behcet's Disease

\| Gastrointestinal ‘

http://excellence-in-
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default/files/presentations/
GUL.pdf




Behcet's disease dataset from two different
populations

Population # of # of # of Platform
Cases Controls genotyped
SNPs

Turkish 1,215 | 1,278 311,459 lllumina, Infinium
assay

Japanese 612 740 500,568 Affymetrix Gene
Chip Human
Mapping 500K

Table 8. Summary of Behcet’s disease dataset.

e In both datasets, each SNP’s genotypic p-value of
association is calculated via calculated via allelic
chi-squared test.

e Using P<0.05 cutoff:
e 18,479 SNPs were included for TR population,
e 20,594 SNPs were included for JP population.




Filtering SNPs via genotypic p-
values

1,215 cases / 1,278 Controls
Turkish ancestry
311459 SNPs

18 479 SNPs
Pag=0.023

612 cases / 740 Controls
Japanese ancestry
500 568 SNPs

Calculate genotypic p-value of a SNP
using allelic chi-squared test

A

<0.05

20 594 SNPs

SNP functionalization

Y

> le

> Obtain functional information of SNPs I

(o)

Combine functional score of a SNP with the GWAS p-value of a SNP

SNPs 2 genes

here a gene
within 2000 bp

YES NO

3869 genes

Consider all known SNP/

associations and assign
the SNP to the gene with
the highest priority

Assign the SNP to the
closest gene

gene transcript

4076 genes

PW ,g=0.0092

Network oriented analysis

N

> Map genes to protein-protein interaction network }1

Identify sub-networks using network topology,

445 sub-networks

genotypic p-values of SNPs and functional

scores of SNPs
‘&’
o o

422 sub-networks

Pathway oriented analysis

246 human
KEGG
pathways

=|I Mapping sub-networks to pathways l|=

{

}

Ranked SNP targeted pathway list of
Turkish population

Ranked SNP targeted pathway list of
Japanese population

'

Commonly Affected KEGG Pathways:
Focal adhesion
MAPK signaling
TGF-beta signaling
ECM-receptor interaction

Complement and coagulation cascades
Proteasome




# of

Associated | # of SNP # of % Common Is Common
SNPs in Targeted Com- Genes in Both | Genes more
GWAS Genes mon Populations than 50% in
P-values Rank (STGsy) STGs any
KEGG Term TR JP TR [(JP (TR [JP |TR |JP TR JP population?
Focal adhesion 9,92E-27 | 9.47E-23 1 2 102 131 201 24 8127.58 | 33.33 N
MAPK signaling
pathway 2,05E-23 | 2.14E-17 2 6 721 121 20 27 4119.99 | 14.81 N
Jak-STAT signaling
pathway 3,68E-21 | 6.36E-14 3 17 49 681 20 14 6129.99 | 42.85 N
TGF-beta signaling
pathway 4,05E-21 | 1.87E-21 4 3 43 71 15 16 12179.99 [ 74.99 Y
ECM-receptor
interaction 1,43E-20 | 1.26E-18 5 5 56 49 18 15 9{49.99 | 59.99 Y
Axon guidance 7,68E-19 | 5.02E-7 6 74 49 99 11 15 2[18.18 | 13.33 N
Complement and
coagulation cascades 1,00E-18 | 2.35E-16 7 10 22 29 10 8 3{29.99 | 37.49 N
Antigen processing and
presentation 1,79E-18 | 1.37E-9 8 43 161 53 14 10 7149.99 | 69.99 Y
Proteasome 1,97E-18 | 1.34E-24 9 1 17 9 4 6 112499 | 16.66 N
Autoimmune thyroid
disease 5,75E-18 | 7.15E-7 10 76 162 44 15 8 6139.99 | 74.99 Y

Table 9. The top 10 KEGG pathways identified for both populations in Behcet’ s disease. 6 out of the top 10
pathways, identified in both populations are shown in red.

B. Bakir-Gungor, et. al., "ldentification of Possible Pathogenic Pathways in Behget’s Disease Using Genome-wide
Association Study Data from Two Different Populations”, 2015, Eur. Journal of Human Genetics, 23(5):678-87.




# of

Associated | # of SNP # of % Commeon Le Commaon
SNPs iq
GWAS # of SNP Targeted Genesin Top 10 Pathways
P-values Rank
KE T TR P TR P |TR . .
GG Term J J J TR population  JP population
Focal adhesion 9.92E-27 | 9.47E-23 1 2 102
MAPK signaling
pathway 2,05E-23 | 2.14E-17 2 6 72
Jak-STAT signaling
pathway 3,68E-21 | 6.36E-14 3 17 49
TGF-beta signaling
pathway 4,05E-21 | 1.87E-21 4 3 43
ECM-receptor
interaction 1,43E-20 | 1.26E-18 5 5 56
# of SNPs from GWASin Top 10 Pathways
Axon guidance 7,68E-19 | 5.02E-7 6 74 49 TR pobulatio J .
Complement and popuation P population
coagulation cascades 1,00E-18 | 2.35E-16 7 10 22
Antigen processing and
presentation 1,79E-18 | 1.37E-9 8 43 161
Proteasome 1,97E-18 | 1.34E-24 9 1 17
Autoimmune thyroid
disease 5,75E-18 | 7.15E-7 10 | 76 162

Table 9. The top 10 KEGG pathways identified for both populations in Behcet’ s disease. 6 out of the top 10
pathways, identified in both populations are shown in red.

B. Bakir-Gungor, et. al., "ldentification of Possible Pathogenic Pathways in Behget’s Disease Using Genome-wide
Association Study Data from Two Different Populations”, 2015, Eur. Journal of Human Genetics, 23(5):678-87.
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Figure 14. KEGG pathway map for complement and coagulation pathway. The set of genes shown in blue includes genes that
are found for TR dataset; yellow includes genes that are found for JP dataset; red includes genes that are found both by TR

and JP GWAS of BD.



‘Epistatic interactions
between autoimmunity
and genetic thrombophilia’

European Journal of Human Genetics (2015) 23, 1279;
doi:10.1038/ejhg.2014.287; published online 28 January 2015

In the recent article by Bakir-Gungor et al,! a novel method of analysis
is proposed to elucidate the genetic pathways that are considered
essential in the phenotypic expression of complex diseases, such as
Behget’s disease (BD). The combined analysis of the data of two
genome-wide association studies (GWAS) that were conducted in the
Turkish and Japan populations with BD>? reveals a shared pathway

between the complement and the coagulation cascade.

assessment of three patients with major vessel thrombosis who were
hospitalized in our department, we have previously formulated the
medical hypothesis that the occurrence of genetic thrombophilia and
certain features of the complex spectrum of BD in selected patients
with thrombosis may not represent a coincidental coexistence, but
rather the core features of a genetically based distinct nosological
entity.* The role of synergistic epistasis is considered the key in this

European Journal of Human Genetics (2015) 23, 1279-1280
© 2015 Macmillan Publishers Limited All rights reserved 1018-4813/15

www.nature.com/ejhg

The theoretical background of this hypothesis seems to be
supported in a preliminary stage through the scientific work of
Bakir-Gungor et al,! and although its data cannot result in safe and
comprehensive conclusions, we are strong advocates of similar future
studies. Beside, there is now a body of evidence that imply the epistatic
interaction between inherited thrombophilia and autoimmunity. In a
recent experimental study by Katzav et al,” it has been demonstrated
that when heterozygous and homozygous factor V-Leiden transgenic
mice were immunized with antiphospholipid antibodies there have

manifestations. Further research in the field of GWAS with the
methodology presented by Bakir-Gungor et al.! seems to be the future
direction to elucidate the pathways in complex diseases and therefore
individualize the treatments or even re-evaluate the classification
of certain diseases.
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Reply to Stoimenis et al

European Journal of Human Genetics (2015) 23, 1279-1280;
doi:10.1038/ejhg.2014.288; published online 14 January 2015

We appreciate the comments made by Stoimenis et al' on our
recently published article,”> describing the application of our novel
analysis method to Behget’s disease (BD) genome-wide association
study data obtained from the Japanese and Turkish populations.
In this study, we analyzed the data in a pathway-related context
to identify the disease-related pathways targeted by the single-
nucleotide polymorphisms (SNPs).> Among the identified path-
ways, Stoimenis et al' focus on the complement and coagulation
pathway since they identified three BD patients with major vessel
thrombosis.
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In conclusion, we agree with Stoimenis et al that our method can
elucidate the commonly targeted pathways as well as the population-
specific pathways that we strongly believe will be the future direction

of analysis to elucidate the marker pathways in complex diseases.
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The authors declare no conflict of interest.

We fully agree with Stoimenis et al that in specific ethnic populations
there exists a strong prevalence of vascular thrombosis in BD and that
there is a positive association between the inherited procoagulant factors
and thrombosis in BD.? According to our analysis, complement and
coagulation pathway ranks as the seventh affected pathway in the
Turkish population, whereas it ranks tenth in the Japanese population.
Commonly targeted genes in this pathway consist of PLAT, F5 and
F13A1. All these genes have been previously identified to be associated
with BD and thrombosis.®> Especially the mutations in F5 gene in
Turkish population have been identified to increase the risk of venous
thrombosis.* Coagulation factor XIII protein is a crucial protein
complex in the final step of blood coagulation process. It is made up
of two domains produced by two separate genes, F13A and F13B. F13A
gene is targeted by the SNPs in both populations, whereas F13B gene is
targeted only in the Turkish population, creating a higher risk of venous
thrombi.> All the population-specific SNPs targeting this pathway have
different functional impacts yielding to different rankings of this
pathway in both the populations.
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Insights

e On Behget's disease datasets, the identified
pathways between two populations show more
commonality than individual genes or SNPs.
(the probability of getting 6 out of top 10
pathways from existing 246 human KEGG
pathways is 2.44E-3%),

e The pathways are critical to elucidate the
mechanisms underlying diseases and show
higher conservation within and across
populations.

e Each individual has a unique combination of
factors involved in disease development
mechanism.

e But, most of the targeted pathways that need to
be altered by these factors are expected to be
the same.




Contributions

e “Fortunately, a portion of the unaccounted 85 to
90% disease variation lies hidden in GWAS
datasets but can be revealed using NEW
strategies.” (Schadt et al, Science Translational
Medicine).

e For GWAS analysis of complex diseases, novel
disease-susceptibility genes and mechanisms can
only be identified by looking beyond the tip of the
iceberg (the most significant SNPs/genes).

e QOur results show that incorporating SNP
functional properties, protein-protein interaction
networks into GWAS can dissect leading
molecular pathways, which cannot be picked up
using traditional analyses.
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Ulgen E, Ozisik O, Sezerman O.U, pathfindR- An R Package for Pathway
Enrichment Analysis Utilizing Active Subnetworks. BioRxiv., 2018.




Integrative analysis of transcriptomics and
epigenomics data using PANOGA

Funct Integr Genomics (2017) 17:53-68 63
Table 7 Pathways that are shared
by at least three types of cancers Pathway name Breast Thyroid Prostate Colon
ErbB signalling pathway 7.75E-12  1.03E-09 9.74E-09 442E-07
Complement and coagulation cascades 270E-12  190E-13 - 7.84E-13
ECM-receptor interaction 738E-10 - 4.69E-11  120E-13
Focal adhesion 9.32E-09 5.30E-12 - 2.64E-07
Chronic myeloid leukaemia 894E-06 141E-09 2.10E-04 -
Neurotrophin signalling pathway 1.37E-05 1.84E-08 - 1.72E-06
T cell receptor signalling pathway 1.11E-06  1.77E-05 148E-07 -
Glioma 5S49E-08 147E-04 790E-04 -
1cer 2.69E-05 231E-05 3.04E-06 -
vasion of epithelial cells 1.22E-05  2.31E-06 3.51E-04 -
cell lung cancer 471E-04 349E-05 6.57E-04 -
genic right ventricular cardiomyopathy (ARVC)  2.63E-04 — 5.82E-05 1.73E-04

ficantly altered (Bonferroni score < 0.01) pathways that are shared by at least three types of cancers
ferroni scores associated with each dataset. Most interestingly, the EtbB signalling pathway was
nificantly altered for all cancer types in our analysis; hence, the ErbB pathway may be the key factor
yus types of cancers

BRCA THCA

Fig. 6 Venn diagram showing significantly altered pathways for all
cancer types. The Venn diagram of significantly altered pathways



“Therapeutics of the future likely will be designed via keeping
cellular networks and pathways in mind." (Collins et al,
Science Translational Medicine).

In complex diseases, while individual SNPs/genes are not
shared by most of the patients, pathways show more
commonality, especially across populations.

We introduced pathway marker concept to the literature,
which explains universal disease development mechanism.

As a potential application, each population may search for
disease causing factors targeting the genes within these
marker pathways.



e Pathway markers can also be extended to individual level to
identify modifications occurring on the genes within these
pathways.

e To understand individual disease development mechanisms,
marker pathways can be scanned for an individual for
alterations in the functions of the genes contained within.

e Thus, determining the disease-causing factors will provide a
valuable insight for personalized therapy targets that would
rectify the impact of these function altering factors.
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Figure 5. From GWAS to Trans-OWAS. (A) (Left) GWAS is a linkage analysis that includes the phenotypic relation to a
single omic layer (genome). GWAS reflects only genetic factors and the phenomenological relationship between genome
and phenome. (Right) Trans-OWAS is a linkage analysis that includes the phenotypic relation to multiple omic layers. Trans-
OWAS reflects both genetic and environmental factors and indicates the molecular relationship of pathogenesis in a trans-
omic network. (B) Multifactorial diseases, such as type 2 diabetes mellitus (T2DM), appear as breakdowns of the insulin
sensitivity pathway (blue) and insulin secretion pathway (red) in a trans-omic network that reflects both genetic and
environmental factors. Abbreviations: trans-OWAS, trans-ome-wide association study; GWAS, genome-wide association

Yugi K., et. al, “Trans-Omics: How To Reconstruct Biochemical Networks Across Multiple 'Omic' Layers.”, Trends Biotechnol.
2016 Apr;34(4):276-290.



Multidimensional -omics Data
Integration Methods

TABLE 1 | Comparison of multidimensional data integration methodologies discussed in the manuscript.

Method Brief description Advantages Limitations Representative tools
category
Clustering/ Transform data into Easy to implement using common Cross-data interaction may be Clustering-based: iCluster (21); ICM (22);

dimensionality
reduction-based
approaches

Predictive
modeling
approaches

Pairwise omics
data integration

Network-based
approaches

Composite
approaches

common space through
graph or kernel-based
methods

Machine learning based
methodologies to predict
prognosis or diagnosis
and discover biomarkers

Centered on interaction
information between pairs
of omics data

Reduce data complexity
by converging multi-
omics information onto
networks

Flexible integration of
multiple integration
models

statistical techniques; retain within-
data properties; robust to different
units of measurements and different
data sets from the public domain

High predictive power; versatile
methodologies; data-driven approach
(does not require preexisting
knowledge of omics interaction)

Easy to implement; reflects inter-
omics interaction; causal implication

Networks can accommodate multiple
layers of data; intuitive depiction and
visualization of regulatory circuits

Flexibility and adaptability to diverse
research needs

altered; application limited to visual
overview of data and detection of
subpopulations

Overfitting issue; can require high
computational power; does not
integrate biological knowledge;
higher accuracy requires larger
data sets

Available data dominated by
expression quantitative trait loci
(eQTLs); low robustness of trans-
association signal

Computationally expensive;
difficult to model feedback loops in
multidimensional space

Few well-acknowledged
frameworks available

TMD (23); SNF (24)

Dimensionality reduction: Biofilter (25);
CIA/MCIA (26); FALDA (27); GMDR (28)

Camelot (29); Kernel fusion (30); sMBPLS
(81); MDI (32); PARADIGM (33); DIVIAN
(34)

MERLIN (35); RAREMETAL (36); EMMA
(37); GEMMA (38); PLINK (39); Matrix
eQTL (40); SMR (41)

Weighted gene coexpression network
analysis (42); MEGENA (43); Bayesian
networks (44); TIGRESS (45); ARACNE
(46); TIE* (47); GENIE3 (48); mixOmics (49)

Analysis Tool for Heritable and
Environmental Network Associations (50,
51); Mergeomics (3, 52)

Arneson D, et. al, “Multidimensional Integrative Genomics Approaches to Dissecting Cardiovascular Disease”, 2017, Front
Cardiovasc Med. 2017 Feb 27;4:8.



Multidimensional -omics Data
Integration Methods
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methods are available, broadly categorized into clustering/dimensionality reduction-based approaches, predictive modeling approaches, pairwise omics data
integration, network-based approaches, and composite approaches integrating multiple modeling approaches.
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Conclusions

« PANOGA (Pathway and Network-Oriented GWAS Analysis) combines
nominally significant evidence of genetic association with current
knowledge of biochemical pathways, protein—protein interaction
networks, and functional information of selected single nucleotide
polymorphisms (SNP).

« With its multifactorial basis, we have shown on four complex diseases
that PANOGA has a good potential to decipher the combination of
biological processes underlying the disease.



Conclusions

* Via comparing GWASs of two different populations, we have shown
that the few SNPs that are identified in GWAS and their associated
genes are mostly targeting the same pathway combinations, and these
biological pathways show higher conservation across populations.

« |f the combination of these pathways does not function properly, a
specific disease may develop.

« Although PANOGA is originally developed to identify disease-
associated pathways via further analyzing GWAS data, later it is shown
to work well on different -omics datasets.



Conclusions

Using different —omics datasets, our group is currently working on the
development of methodologies to extend this approach to individual
level to identify specific modifications occurring on the genes within
these identified pathways.

Dissecting the individual disease development mechanisms will
provide a valuable insight for discovering individualized therapy targets
and will pave the way towards personalized medicine applications.

This approach would enable biomedical researchers to identify
affected pathways and function-altering factors within these pathways.

For diagnostic purposes, the identification of the disease-related
pathways is also instrumental in the determination of biomarkers at
different levels (e.g., SNPs, gene expression levels, protein levels in
serum, miRNA levels, metabolite concentration).



Ongoing Research

Merge—omics using Pathway and Network Oriented Integration

The Identification of Discriminative Single Nucleotide
Polymorphisms for the Classification of Behcet's Disease

Identification of Commonly Affected Pathways in Psychiatric
Diseases

Comparative Analysis of Disease Specific Sub-Network
Identification Algorithms

Homozygous Stretch Identification from Next Generation
Sequencing data (HomSl)

Machine Learning Analysis of Inflammatory Bowel Disease-
Associated Metagenomics Dataset
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