

THE NEURAL SIMULATION TOOL NEST 1st HPAC Platform Training

December 11, 2018 | Jochen M. Eppler (j.eppler@fz-juelich.de) | SimLab Neuroscience

OUTLINE

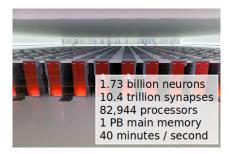
Introduction

Neuronal simulations

Technological background

Developing new models

Performance



This presentation is provided under the terms of the Creative Commons Attribution-ShareAlike License 4.0.

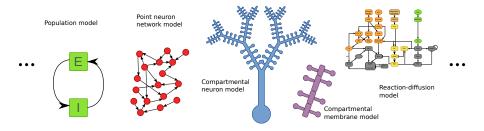
NEST = NEURAL SIMULATION TOOL

- Point neurons and neurons with few electrical compartments
- Phenomenological synapse models (STDP, STP)
 - + gap junctions, neuromodulation and structural plasticity
- Frameworks for rate models and binary neurons
- Support for neuroscience interfaces (MUSIC, libneurosim)
- Highly efficient C++ core with a Python frontend
- Hybrid parallelization (OpenMP+MPI)
- Same code from laptops to supercomputers

NEST DESIGN GOALS

High accuracy and flexibility

- Each neuron model is assigned an appropriate solver
- Exact integration is used for suitable neuron models
- Spikes are usually restricted to the computation time grid
- Spike interaction in continuous time for some models


Constant quality assurance

- Automated unittest suite included in NEST build
- Continuous integration for all repository checkins
- Code review for all code contributions

NEST's development is always driven by scientific needs

WHEN TO USE NEST?



Complexity of single elements

Possibility to simulate large networks

WHEN TO USE NEST?

Complexity of single elements

Possibility to simulate large networks

OBTAINING NEST

Download from http://nest-simulator.org

- Source code for official releases
- Virtual machine images (e.g. for use on Windows)

Open source development:

- https://github.com/nest/nest-simulator
- Direct access to current and future development
- Ability to fork and develop locally
- Pull requests for merging into the official version

From your distribution's package repository:

- PPA for Ubuntu and Debian
- Package in Neuro-Fedora

INSTALLING FROM SOURCE (LINUX)

1 Download NEST and unpack (in \$HOME folder):

```
wget https://git.io/vFxDo
tar -xzvf nest-2.14.0.tar.gz
```

2 Create and enter build directory:

```
mkdir nest-2.14.0-bld cd nest-2.14.0-bld
```

Configure, compile and install build:

```
cmake -DCMAKE_INSTALL_PREFIX=$HOME/nest-2.10.0-inst ../nest-2.14.0
make -j4
make install
```

- 4 Update environment (in \$HOME/.bashrc or similar file):
 - . \$HOME/nest-2.14.0-inst/bin/nest_vars.sh

NEST LIVE MEDIA USING VIRTUALBOX

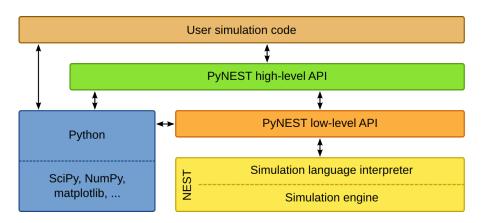
- 1 Download and install VirtualBox: http://virtualbox.org
- Download NEST live media: http://nest-simulator.org/download
 - Includes NEST, NEURON, Brian, PyNN, ...
- 3 Start VirtualBox:
 - lacksquare File o Import Appliance o Appliance to import o Open
- **Start VM, install VirtualBox Guest Additions CD image** (Devices →). Follow instructions and restart guest OS
- 5 Set up shared folders (between host and guest):
 - Create shared folder in host OS, e.g. vb_shared
 - Devices → Shared Folders → Settings: add new
 - lacktriangle Uncheck 'Auto-mount' and 'Make permanent' ightarrow OK ightarrow OK
 - Create mount point in guest OS:
 mkdir sharedir
 sudo mount t vboxsf o uid=999,gid=999 vb_shared sharedir

HELP!

Within Python:

```
nest.help()
nest.helpdesk()
nest.help('iaf_psc_exp')
nest.help('Connect')
```

Online documentation:


http://nest-simulator.org/documentation

Community:

- NEST user mailing list
- Bi-weekly open video conference
- http://nest-initiative.org/community

HOW TO USE NEST?

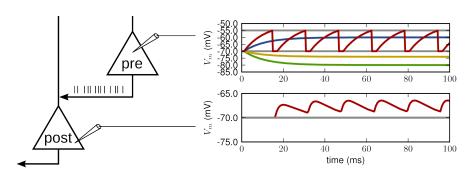
Different user interfaces for maximum flexibility

HOW TO USE NEST?

Two different command line user interfaces:

The built-in simulation language interpreter SLI /n iaf_psc_alpha << /V_m -50.0 >> 5 Create def /sd spike_detector Create def n sd Connect

The Python interface PyNEST


```
n = nest.Create("iaf_psc_alpha", 5, {"V_m": -50.0})
sd = nest.Create("spike_detector")
nest.Connect(n, sd)
```

NEST is also supported by the multi-simulator interface PyNN

NEURONAL SIMULATIONS IN NEST

A simulation in NEST mimics a neuroscientific experiment

NEURONAL SIMULATIONS IN NEST

- The network in NEST comprises a directed, weighted graph
 - Nodes represent either neurons or devices
 - Edges represent synapses between nodes
- Nodes are updated on a fixed-time grid, while spikes can also be in continuous time
- Neurons can be arbitrarily complex, not just point neurons
- Devices for stimulating neurons and recording their activity
- Synapse models to establish connections between nodes
- Parallelization and inter-process communication is handled transparently by NEST

Slide 12

NEURON MODELS

- Integrate-and-fire models (iaf_)
 - Current-based (iaf_psc)
 - Conductance-based (iaf_cond)
 - Different post-synaptic shapes (_alpha, _exp, _delta)
- Single compartment Hodgin-Huxley models (hh_)
- Adaptive exponential integrate-and-fire models (aeif_)
- MAT2 neuron model (Kobayashi et al. 2009)
- Neuron models with few compartments
- Creation of neurons using the Create command:

```
Create(<model>, <num>, <params>)
```


STIMULATION DEVICES

Spike generators:

- spike_generator spikes at prescibed points in time
- poisson_generator spikes according to a Poisson distribution
- gamma_sup_generator spikes according to a Gamma distribution

Current generators

- ac_generator provides a sine-shaped current
- dc_generator provices a constant current
- step_current_generator provides a step-wise constant current

Slide 15

noise_generator provides a random noise current

RECORDING DEVICES

- spike_detector records incoming spikes
- multimeter records analog quantities (potentials, conductances, ...)
- voltmeter records the membrane potential
- correlation_detector records pairwise cross-correlations between the spiking activity of neurons
- weight_recorder records the weight of connections

GENERAL PARAMETER ACCESS

All parameter access in NEST is carried out via dictionaries

Retrieving the status of an element:

```
GetStatus(<element(s)>)
GetStatus(<element(s)>, <key(s)>)
```

Setting properties of an element:

```
SetStatus(<element(s)>, <dict(s)>)
SetStatus(<element(s)>, <key(s)>, <value(s)>)
```


SPECIFICATION OF CONNECTIVITY

The Parameter conn_spec:

- defines the connection rule
- defines rule-specific parameter
- can be a string or a dictionary

```
A = Create('iaf_psc_alpha', n)
B = Create('spike_detector', n)
Connect(A, B, 'one_to_one')
```

```
A = Create('iaf_psc_alpha', n)
B = Create('iaf_psc_alpha', m)
Connect(A, B)
```


SPECIFICATION CONNECTIVITY

Further rules and their keys:

- 'fixed_outdegree', 'outdegree'
- 'fixed_total_number', 'N'
- 'pairwise_bernoulli', 'p'

Slide 10

SPECIFICATION OF SYNAPSE PROPERTIES

Using customized synapse model:

Insert synapse parameter directly into Connect():

syn_spec defines the synapse model and synapse-specific parameters and can be a string or a dictionary

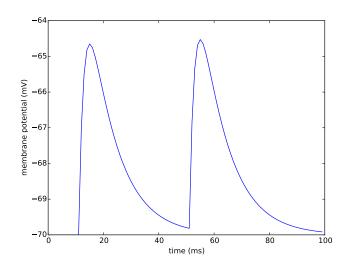
RANDOMIZATION OF SYNAPSE PROPERTIES

specify distributed parameters as dictionaries

```
delay_dist = {'distribution': 'uniform',
              'low': 0.8, 'high': 2.5}
alpha_dist = {'distribution': 'normal_clipped',
              'low': 0.5, 'mu': 5.0,
              'sigma': 1.0}
syn_dict = {'model': 'stdp_synapse',
            'weight': 2.5.
            'delay': delay_dist,
            'alpha': alpha_dist}
```

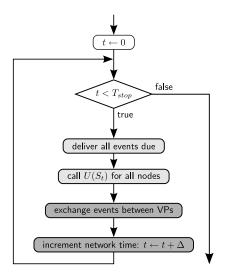

DISTRIBUTIONS

Distributions	Keys
'normal'	'mu', 'sigma'
'normal_clipped'	'mu', 'sigma', 'low ', 'high'
'lognormal'	'mu', 'sigma'
'lognormal_clipped'	'mu', 'sigma', 'low', 'high'
'uniform'	'low', 'high'
'uniform_int'	'low', 'high'
'binomial'	'n', 'p'
'binomial_clipped'	'n', 'p', 'low', 'high'
'exponential'	'lambda'
'exponential_clipped'	'lambda', 'low', 'high'
'gamma'	'order', 'scale'
'gamma_clipped'	'order', 'scale', 'low', 'high'
'poisson'	'lambda'
'poisson_clipped'	'lambda', 'low', 'high'



A FULL EXAMPLE

```
import nest
                                               # import NEST module
neuron = nest.Create('iaf psc exp')
                                               # create a neuron
voltmeter = nest.Create('voltmeter')
                                              # create a voltmeter
spikegenerator = nest.Create('spike generator') # create a spike generator
nest.SetStatus(spikegenerator, {'spike_times': [10., 50.]}) # let it spike
# connect spike generator and voltmeter to the neuron
nest.Connect(spikegenerator, neuron, syn_spec={'weight' : 1E3})
nest.Connect(voltmeter, neuron)
nest.Simulate(100.) # run the simulation
# read out recording time and voltage from voltmeter and plot them
times = nest.GetStatus(voltmeter)[0]['events']['times']
voltage = nest.GetStatus(voltmeter)[0]['events']['V m']
pl.plot(times, voltage)
pl.xlabel('time (ms)'); pl.ylabel('membrane potential (mV)')
pl.show()
```



A FULL EXAMPLE

SIMULATION LOOP

- Simulation starts at t=0
- We simulate for T_{stop} ms
- $U(S_t)$ propagates the neuron state S to time t
- VPs are virtual processes
- ullet Δ is the minimal delay in the network
- parallel on all threads

Slide 25

■ parallel on all processes

NETWORK UPDATE

- Neurons and devices are updated in the order of their creation
- During the run of the update function, all previous events are taken care of, and new events are created
- Spikes are buffered for local and remote delivery in the next time slice
- All other events are delivered immediately to local nodes
- Devices for stimulation and recording are replicated on each VP, which also deliver locally

NODE UPDATE

During an interval of the minimal transmission delay in the network (Δ), neurons are effectively decoupled.

- The update function of nodes (U) is called every Δ steps
- The nth time slice of length Δ starts at $T_n^0 = n \cdot \Delta$ and ends at $T_n^\infty = (n+1) \cdot \Delta$
- Internally, nodes use a time step of h (e.g. for solvers)

STRUCTURED NETWORKS USING TOPOLOGY

Invoke the topology module:

from nest import topology

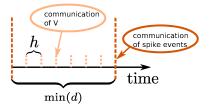
Functionality:

- Set node positions on grids or arbitrary points in space (1D,2D,3D)
- Nodes can be neurons or combinations of neurons and devices
- Connect nodes in a position- and distance-dependent manner
- Set boundary condition (periodic or not)
- Enable/disable self-connections (autapses) or multiple connections (multapses)

Further reading:

www.nest-simulator.org/documentation

→ NEST user manual → Topological connections



GAP JUNCTIONS: IMPLEMENTATION

$$I_i^{gap} = g_{ij}(V_j - V_i) \bigvee_{V_i} \bigvee_{V_j} I_j^{gap} = g_{ij}(V_i - V_j)$$

Neuron
$$i$$
 (hh_psc_alpha_gap)
$$y_i'(t) = f_i(y_i(t)) \;,\; y_i(t_0) \; \text{given}$$

$$\frac{V_i'}{C_m} = -I_i^{ionic}(V_i, m_i, h_i, n_i, p_i)$$

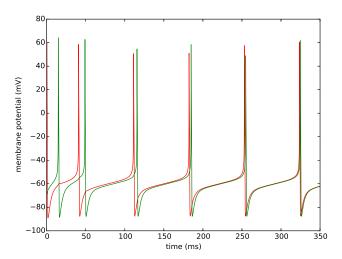
$$+I_i^{applied}(I_i^{ex}, I_i^{in})$$

$$+I_i^{gap}(V_i, V_j)$$

- at each time point neuron i needs membrane potential of neuron j
- large system of differential equations
- naïve: communication of V in each step
- better: Jacobi waveform relaxation

Slide 20

Hahne et al. (2015). A unified framework for spiking and gap-junction interactions in distributed neural network simulations. Frontiers in Neuroinformatics, 9:22



GAP JUNCTIONS: EXAMPLE

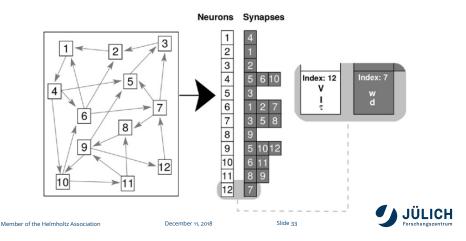
```
nest.SetKernelStatus({'max_num_prelim_iterations': 15,
                      'prelim interpolation order': 3.
                      'prelim tol': 0.0001})
neuron = nest.Create('hh psc alpha gap', 2, {'I e': 100.})
nest.SetStatus([neuron[0]], {'V_m': -10.})
vm = nest.Create('voltmeter', { 'interval': 0.1})
syn_dic = {'model': 'gap_junction', 'weight': 0.5}
nest.Connect(neuron, neuron, syn spec=syn dic)
nest.Connect(vm. neuron)
nest.Simulate(351.)
vm_dict = nest.GetStatus(vm, 'events')
times vm = vm dict[0]['times']
V_vm = vm_dict[0]['V_m']
```


GAP JUNCTIONS: EXAMPLE

Slide 31

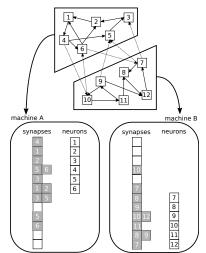
PARALLELIZATION IN NEST

Model developers and users (mostly) don't have to care about parallelization.

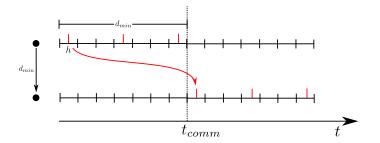

• A neuron n is created on the virtual process p, where

$$gid(n) \mod N_{MPI} == p$$

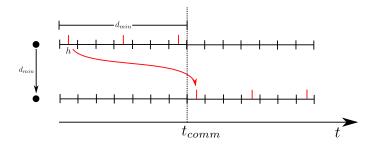
- On all other VPs, a light-weight proxy is created
- Devices are replicated on each VP to distribute load
- There is one random number generator (RNG) per thread
- In addition, there is a global RNG that is kept synchronized


REPRESENTATION OF NETWORK STRUCTURE: SERIAL

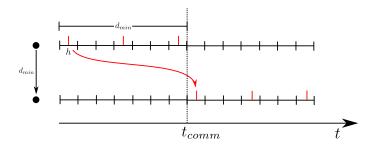
- Each neuron and synapse maintains its own parameters
- Aynapses save the index of the target neuron


REPRESENTATION OF NETWORK STRUCTURE: DISTRIBUTED

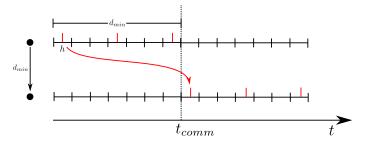
- neurons are distributed round robin onto processes
- one target list for every neuron on each machine
- synapse stored on machine that hosts the target neuron
- wiring is a parallel operation



 communication only required in intervals of the minimal delay between neurons



- communication only required in intervals of the minimal delay between neurons
- ullet communication frequency independent of step size h



- communication only required in intervals of the minimal delay between neurons
- ullet communication frequency independent of step size h
- less communications containing more data is more efficient due to overhead of communication between machines

- communication only required in intervals of the minimal delay between neurons
- ullet communication frequency independent of step size h
- less communications containing more data is more efficient due to overhead of communication between machines
- buffer sent to all machines (MPIAllgather)

Event-driven simulation:

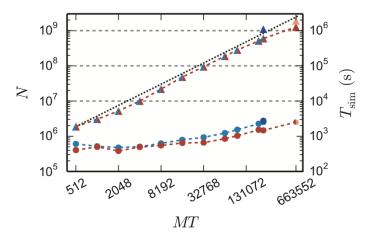
- Visit a neuron only when it receives an event (e.g. a spike)
- From $y(t_i)$, calculate $y(t_{i+1})$

Time-driven simulation:

- Visit each neuron in each time step h
- From y(ih), calculate y([i+1]h)

	Event-driven	Time-driven
Pros	 more efficient for low input rates 'correct' solution for invertible neuron models 	 more efficient for high input rates works for all neuron models scales well
Cons	 only works for neurons with invertible dynamics event queue does not scale well 	 only 'approximate' solution even for analytically solvable models spikes can be missed due to discrete sampling of membrane potential

NEST uses a hybrid approach to simulation


- input events to neurons are frequent: time-driven algorithm
 - If the dynamics is nonlinear, we need a numerical method to solve it, e.g.:
 - Forward Euler: $y([i+1]h) = y(ih) + h \cdot \dot{y}(ih)$
 - Runge-Kutta (kth order)
 - Runge-Kutte-Fehlberg with adaptive step size
 - ...
 - $\rightarrow\,$ Use a pre-implemented solver, for example, from the GNU Scientific Library (GSL).
 - If the dynamics is linear (e.g. LIF or MAT), we can solve it exactly.

NEST uses a hybrid approach to simulation

- input events to neurons are frequent: time-driven algorithm
 - If the dynamics is nonlinear, we need a numerical method to solve it, e.g.:
 - Forward Euler: $y([i+1]h) = y(ih) + h \cdot \dot{y}(ih)$
 - Runge-Kutta (kth order)
 - Runge-Kutte-Fehlberg with adaptive step size
 - ...
 - $\rightarrow\,$ Use a pre-implemented solver, for example, from the GNU Scientific Library (GSL).
 - If the dynamics is linear (e.g. LIF or MAT), we can solve it exactly.
- events at synapses are rare: event driven component
 - Exception: gap junctions

NEST PERFORMANCE

Maximum network size and corresponding run time as function of number of virtual processes on the K computer (red) and JUQUEEN (blue). Taken from Kunkel et al., (2014), Front Neuroinf. DOI: 10.3389/fninf.2014.00078

REFERENCES AND FURTHER READING

- The NEST Initiative homepage at www.nest-initiative.org
- Gewaltig et al. (2012) NEST by example: An introduction to the neural simulation tool NEST. doi:10.1007/978-94-007-3858-4_18
- Hanuschkin et al. (2010) A general and efficient method for incorporating precise spike times in globally time-driven simulations. doi:10.3389/fninf.2010.00113
- Kunkel et al (2012) Meeting the memory challenges of brain-scale network simulation. doi:10.3389/fninf.2011.00035

Please tell us about problems. We only can fix what we know of!

NEST CONFERENCE 2019

June 24-25 2019 Norwegian university of life sciences, Ås, Norway

NEST users an developers come together to discuss

- Current research carried out with NEST
- Poster session for presenting own work
- Future development directions for NEST

Save the date!

ACKNOWLEDGMENTS

This presentation is based on previous work by many people.

- Hannah Bos
- David Dahmen
- Moritz Deger
- Jochen Martin Eppler
- Espen Hagen
- Abigail Morrison
- Jannis Schuecker
- Johanna Senk
- Tom Tetzlaff
- Sacha van Albada

