

Industry 4.0: Challenges and opportunities for HPC and data-intensive applications

YOUSSEF MESRI

A. BAZILE, C. BEHBAH, E. HACHEM, M. KHALLOUFI, G. MANZINALI, C. MENSAH, R. VALETTE

MINES PARISTECH, PSL UNIVERSITY

Motivation : Industry 4.0

CAE: Computer Aided Engineering

Outline

- Advanced Numerical Methods for CFD
- HPC and Big Data/AI Convergence
- Adaptive Algorithms based Error Estimation

Applied Maths, High Performance Computing (HPC) and Fluid Modeling

4

Elie Hachem HDR 2014

Finite elements and Fluid-Structure Interaction

Youssef Mesri HDR 2016 Finite elements, HPC &

meshing

Rudy Valette HDR 2014 Rheology & complex fluids

Thierry Coupez

Finite elements and fluids

Philippe Meliga HDR 2018 – CNRS

Instabilities & control

RMP, SP2, TMP, CSM,...

PERSEE, CDM, CES, CTP, CRC et GeoSciences

MINES + ParisTech ESPCI et IPGG (PSL) INPHYNI, OCA, INRIA (UCA)

Stanford University, FRG CIMNE UPC DAMPT Cambridge Barcelona SuperComputing M2P2 Aix Marseille

Advanced numerical methods

Advanced Numerical Methods

Anisotropic and parallel 3D mesh adaptation

- A priori and a posteriori error estimators
- Boundary layers & multicriteria adaptation
- Conservative Interpolation

Advanced Finite elements methods

- Adaptive & monolithic framework
- Multi-scale appraoch VMS
- Conservative Levelset methods

Massively parallel computing

- Hierarchical mesh/domain decomposition
- Load balancing

Immersive methods

- Fluid-Structure Interaction
- Immersed domains: surface mesh & NURBS
- Extension to moving domains.

Experimental and numerical characterization of dense suspensions

Fluid Structure Interaction & Moving Mesh

Anisotropic large mesh deformation

- Inverse Wighting Distance
- Mesh quality-based appraoch
- Conservative a priori geometric features (i.e. boundary layers, ...)

Multi-body configurations

- Adaptive & monolithic framework
- Multi-scale appraoch VMS (iLES)
- Massively parallel computing
- Hierarchical algorithms
- Load balancing

Fluid Structure Interaction and Aerodynamics

Turbulent incompressible Navier-Stokes flow

Vortex-Induced Vibration

Computing and simulation challenges examples

Challenge 1: Reduce environment impact of the civil aviation

Challenge 2: Design of new stratospheric plateforms

FSI and Industrial heat treatment

Industry 4.0: Industrial partnership

Industrial Chair:

Title: « Multi-scale digital framework for safety design of indutrial quenching processes »

12 industrial partners

Period: 2018 – 2022

Site web: www.chaireinfinity.fr

Design of new high-quality material products

11

Convergence of HPC and Data Science

Extract useful information from large data set to perform efficiently large scale simulations

- Convergence between:
 - Models
 - High performance simulation algorithms and data analytics

HPC vs BigData/AI

Parallelism for scalability

- Performance comes first
- Low level programming (MPI+X)
- Thin Software stack
- Stable software libs
- ► HPC centers

HPC

Big Data

- Ease of programming comes first
- High level programming (Spark, TensorfFlow)
- Thick software stack
- Quickly changing libs
- Cloud platforms

Jobs runs few hours on thoursands of cores

Jobs runs few days on tens of nodes

HPC and BigData/AI Convergence

Two research directions

- Accelerating AI and Big Data with the help of HPC
 - Accelerating ML/DL with task-based programming (Dask, StarPU)
- AI/Big Data analytics for large scale scientific simulations
 - Large scale parallel deep reinforcement learning (Turbulence models, optimization,...)

Fast decision-making Tool - deep reinforcement learning

Geometry effect

Orientation effect

Numerical Simulation – PhD M. Khalloufi, Tom Bell Prize 2017

Parallel Adaptive Finite Element Framework

[1] G. Manzinali, E. Hachem, Y. Mesri, Adaptive stopping criterion for iterative linear solvers combined with anisotropic mesh adaptations, CMAME, 2018
[2] Bazile, A., Hachem, E., Larroya-Huguet, J. C., Mesri, Y. Variational Multiscale error estimator for anisotropic adaptive fluid mechanic simulations. CMAME, 331, 94-115, 2018.
[3] Y. Mesri, Predictive load balancing for parallel anisotropic mesh adaptation applications, preprint, 2018

Anisotropic and dynamic mesh adaptation

Dynamic anisotropic mesh according to velocity variations: velocity field (left), adapted mesh (right).

Dynamic and parallel mesh adaptation algorithm

Type 1: Interpolation error estimator

Interpolation error estimator:

- d the dimension of the problem,
- λ_d the eigenvalue of the recovered Hessian matrix $H_R(u)$
- h_d the size of the element in the direction d.

$$\bar{\eta}_T^p = \int_T \left(\mathcal{H}(u_h(x_T))(x - x_T) \cdot (x - x_T) \right)^p dT$$

Anisotropic metric definition:

$$\mathcal{H} = \mathcal{R}\Lambda\mathcal{R}^T = |\lambda_1|e_1 \otimes e_1 + \ldots + |\lambda_d|e_d \otimes e_d$$

Find $h_T = \{h_{1T}, \dots, h_{dT}\}, T \in \mathcal{T}_h$ that minimizes the cost function $F(h_T) = \sum_{T \in \mathcal{T}_h} (\eta_T)^p$ under the constraint $N_{\mathcal{T}'_h} = C_0^{-1} \sum_{T \in \mathcal{T}_h} \int_T \prod_{i=1}^d \frac{1}{h_{iT}} dT$

Modification of the mesh according to this geometrical transformation.

Mesri, Y., Khalloufi, M., & Hachem, E. (2016). On optimal simplicial 3D meshes for minimizing the Hessian-based errors. Applied Numerical Mathematics, 109, 235-249.

$$u)(x),$$

$$= \int_{T} \left(\mathcal{H}(u_h(x_T))(x - x_T) \cdot (x - x_T) \right)^p dT$$

 $\|u - u_h\|_{L^p(\Omega)} \leq C \|u - \Pi u\|_{L^p(\Omega)}$

We obtain an explicit expression of the error

$$u'(\mathbf{x}) \approx u'_{bub}(\mathbf{x}) = \sum_{i=1}^{m} c_i^b b_i(\mathbf{x})$$

Irisarri, D., & Hauke, G. (2017). Pointwise Error Estimation for the One-Dimensional Transport Equation Based on the Variational Multiscale Method. *IJCM*, *14*(04), 1750040.

> We compute explicitly the a posteriori subscales error estimator.

New isotropic & anisotropic metric mesh adaptation based on subscales

New isotropic metric based mesh adaptation:

We propose the following new isotropic metric tensor:

$$\mathcal{H}_{iso} = \mathcal{R}\Lambda \mathcal{R}^T = |\lambda|e_1 \otimes e_1 + \ldots + |\lambda|e_d \otimes e_d$$

With:

$$|\lambda| = \frac{1}{h_{new}^2} = \frac{||u'||_{L^{\infty}}(\Omega_e)}{u'_{TOL}} \times \frac{1}{h^2}$$

Where \mathcal{R} is the orthogonal matrix built with eigenvectors $(e_i)_{\{i=1,..,d\}}$ of $H_R(u_h(x))$

New anisotropic metric based mesh adaptation:

We propose a new anisotropic local error indicator:

With

$$\eta_{\Omega_e,new} = d|\Omega_e|^{\frac{1}{p}} \times |\lambda_d(x_0)| \times \frac{||u'||_{L^{\infty}}(\Omega_e)}{u'_{TOL}} \times h^2_{d,new}$$

$$\mathcal{H}_{aniso}^{new} = \mathcal{R}\Lambda\mathcal{R}^T = \frac{\|u'\|_{L^{\infty}}(\Omega_e)}{u'_{TOL}} |\lambda_1| e_1 \otimes e_1 + \dots + \frac{\|u'\|_{L^{\infty}}(\Omega_e)}{u'_{TOL}} |\lambda_d| e_d \otimes e_d$$

Where \mathcal{R} is the orthogonal matrix built with eigenvectors $(e_i)_{\{i=1,..,d\}}$ of $H_R(u_h(x))$

Bazile, A., Hachem, E., Larroya-Huguet, J. C., & Mesri, Y. (2018). Variational Multiscale error estimator for anisotropic adaptive fluid mechanic simulations: Application to convection-diffusion problems. CMAME, 331, 94-115.

Numerical benchmarks with analytical solutions

Bazile, A., Hachem, E., Larroya-Huguet, J. C., & Mesri, Y. (2018). Variational Multiscale error estimator for anisotropic adaptive fluid mechanic simulations: Application to convection-diffusion problems. CMAME, 331, 94-115.

Numerical benchmarks with analytical solutions

Error

0.010

-0.007

0.005

0.003

Bazile, A., Hachem, E., Larroya-Huguet, J. C., & Mesri, Y. (2018). Variational Multiscale error estimator for anisotropic adaptive fluid mechanic simulations: Application to convection-diffusion problems. CMAME, 331, 94-115.

Application to the impingement jet cooling

Adaptive Stopping Criteria for Iterative Solvers

AFEM framework – Adaptive Stopping Criterion

G. Manzinali, E. Hachem, Y. Mesri, Adaptive stopping criterion for iterative linear solvers combined with anisotropic mesh adaptation, application to convection-dominated problems,

Adaptive stopping criterion - Error estimate based

The main idea is to stop the iterative resolution when the algebraic error is lower than to the estimated error

$$\|\nabla(u_h-u_h^n)\|_{L^2}\leqslant c\left(\sum_{T\in\mathcal{T}_h}\eta_T^2\right)^{1/2}$$

Assumptions

٠

• Algebraic error approximated to the residual error

$$\|\nabla(u_h - u_h^n)\|_{L^2}^2 \approx \|\mathbf{r}^n\|_{L^2}^2 \longrightarrow \|\mathbf{r}^n\| \leq 0.01 \left(\sum_{T \in \mathscr{T}_h} \eta_T^2\right)^{1/2}$$

Scaling factor $c = 0.01$

1 / 2

[3] Marco Picasso. A stopping criterion for the conjugate gradient algorithm in the framework of anisotropic adaptive finite elements. International Journal for Numerical Methods in Biomedical Engineering, 25(4):339–355, 2009

Numerical results – Steady Problems

We start from a coarse uniform **mesh** and we perform 30 <u>adaptation steps</u>

SOLVER:

- Conjugate Gradient (Laplace)
- GMRES (Convection diffusion)

PRECONDITIONER:

- ILU(k)
- For GMRES right preconditioner implemented

We compare the **total number** of linear **iterations** needed for the solution of all the steps

- Using a **classical** stopping criterion
- Using the proposed **adaptive** stopping criterion

Steady Problems – Laplace problem^[3,4]

$$\begin{cases} -\Delta u = f, & \text{in } \Omega, \\ u = 0, & \text{in } \Gamma. \end{cases}$$

[3] Marco Picasso. A stopping criterion for the conjugate gradient algorithm in the framework of anisotropic adaptive finite elements. International Journal for Numerical Methods in Biomedical Engineering, 25(4):339–355, 2009
 [4] Luca Formaggia and Simona Perotto. Anisotropic error estimates for elliptic problems. Numerische Mathematik, 94(1):67–92, 2003

Steady Problems - Convection-diffusion

Problem equations

$$\begin{cases} -\nabla \cdot (a\nabla u) + \mathbf{v} \cdot \nabla u = f, & \text{in } \Omega\\ u = g, & \text{in } \Gamma \end{cases}$$

G. Manzinali, E. Hachem, Y. Mesri, Adaptive stopping criterion for iterative linear solvers combined with anisotropic mesh adaptation, application to convection-dominated problems,

Unsteady Problems - Convection-diffusion

Problem equations

	$\partial_t u(x,t) + \mathbf{v} \cdot \nabla u(x,t) - \nabla \cdot (k \nabla u(x,t)) = f$	in Ω
$\left\{ \right.$	$u(.,0) = u_0$	in Ω
	u(x,t) = g	in Γ

G. Manzinali, E. Hachem, Y. Mesri, Adaptive stopping criterion for iterative linear solvers combined with anisotropic mesh adaptation, application to convection-dominated problems,

Unsteady Problems – Navier-Stokes + Thermal

$$\|\nabla(u_h - u_h^n)\|_{L^2} \leqslant c \left(\sum_{T \in \mathcal{T}_h} \eta_T^2\right)^{1/2} \quad 32$$

Problem equations

ſ	$ abla \cdot \mathbf{u} = 0$	in Ω	
ł	$\rho(\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u}) - \nabla \cdot (2\mu \ \varepsilon(\mathbf{u}) - p \ \mathbf{I_d}) = \rho_0 \beta(T - T_0) \ \mathbf{g}$	in Ω	 ~ 40% CPU time saving
l	$\rho C_p(\partial_t T + \mathbf{u} \cdot \nabla T) - \nabla \cdot (\lambda \nabla T) = f$	in Ω	

Stopping criterion	Total Iterations	Ratio	CPU time Solver	CPU time reduction Solver	CPU time simulation
Classical	609922	/	37h	/	41h
Adaptive "c=0.1"	107846	5,7	23h	-38%	28h

AFEM Framework – Load balancing

AFEM Framework – Load balancing

[1] G. Manzinali, E. Hachem, Y. Mesri, Adaptive stopping criterion for iterative linear solvers combined with anisotropic mesh adaptation, application to convection-dominated problems, CMAME, 2018

[2] Bazile, A., Hachem, E., Larroya-Huguet, J. C., Mesri, Y. Variational Multiscale error estimator for anisotropic adaptive fluid mechanic simulations: Application to convection-diffusion problems. CMAME, 331, 94-115, 2018. MINES ParisTech ★

[3] Y. Mesri, Predictive load balancing for parallel anisotropic mesh adaptation applications, preprint, 2018

Dynamic load balancing (lid-driven cavity)

Load balancing based on local topological mesh repartitioning

Estimate the expected dynamic workload

36

Predictive load balancing

$$(1) \qquad q(T) = C_0 \frac{(Volume)(T)_{M(T)}}{h_{M(T)}^d}$$

2
$$w(v) = \frac{1}{q(T)}$$

3 $w(u, v) = \frac{1}{2q(S)} + \frac{1}{2q(T)}$

4

$$F(W, A, m) := max_{p \in V(A)}(t_p) + max_{p \in V(A)}(c_p)$$

Predictive load balancing

3D test case

2D test case

Parallel NS with predictive load balancing

30M elements NS Incompressible Re = 3200

512

Y. Mesri, Parallel High-Reynolds Incompressible Flow with Adaptive Anistrotropic Meshing, submitted

Potential Collaboration topics?

Methods

- Numerical Methods and their implementation
- Experimental prototyping and calibration
- Data analytics

Technology

- Cloud computing
- HPC and big data processing
- Artificial Intelligence/DL/ML

Applications

- Muti-phase flows
- Fluid Structure Interaction
- Heat transfer

Targets new applications

- Digital Health
- Mobility

• Système d'équations aux dérivées partielles

 $\mathcal{A}(u) = f$

 $\mathcal{A}_h(u_h) = f_h$

• Méthode numérique

Résolution itérative

$$A^{k-1}U^{k,i} = F^{k-1} - R^{k-1,i},$$

JOU

le vecteur $U^{k,i}$ est une représentation algébrique de u_h à l'itération non-linéaire k et linéaire i

Solve over 100 billion unknowns system

THANK YOU FOR YOUR ATTENTION

