Self-assembly of molecules on surfaces

Manuel Alcamí Departamento de Química Universidad Autónoma de Madrid

6th RES Users' Meeting

Outline

- Motivation
- Examples of molecules deposited on surfaces
- Graphene/Ru(0001)
- TCNQ / Graphene/Ru(0001)
- Conclusions

1. Motivation

- Self-assembly of functionalized molecules on solid surfaces is an important tool to fabricate devices with applications on molecular electronics.
- Increase of efficiency of organic solar cells.

- Understand the factors governing self-assembly: intermolecular forces, molecule-substrate interactions.
- Model the changes in the adsorbed molecule and the substrate.

Molecules for organic photovoltaic (OPV) devices

Electron donors:

Electron acceptors:

Motivation

Observed self-assembly

Electron acceptors

PCBM/Au(111)

Angew. Chem 46, 7484 (2007) ChemPhysChem. 9, 1030 (2008)

Two different phases depending on the coverage

TCNQ/Cu(100) *Nature Chem 2, 374 (2010)* Large distortion of the molecule and the surface

Motivation

New polymerization reactions TCPQ/Cu(100)

Evidence for intermediate species

Nature Chem Submitted

TCAQ (intact)

TCAQ -1CN

TCAQ - 2CN

TCNQ Graphene/Ru(0001)

Graphene/Ru(0001) Special Surfaces with periodic modulations

Epitaxial graphene on Ru(0001)

- Mismatch between the lattice constant of graphene (2.46 Å) and the one of Ru(0001) (2.7 Å)
- Spatially modulated chemical interaction between C and Ru atoms
- The surface has two different areas (low/high) with different electronic density that can induce self-assembly

PCCP 101, 099703 (2008) PRL 101, 126102 (2008) New J. Phys. 12, 093018 (2010)

Technique	Graphene corrugation (Å)		
Low Energy Electron Diffraction	1.5		
Surfrace X-Ray Diffraction	0.82 - 1.5		
Helium Atom Scattering	0.15 – 0.4		
STM (V _s = -1 V)	1.0		
Density Functional Theory corrugation: 1.5 Å -1.7 Å			

Theoretical Model

DFT: PBE functional + van der Waals interactions – Grimme correction

Periodic bounday conditions (11×11) graphene unit cells forced over (10x10) Ru(0001) unit cells – 3 (5) Ru layers *Calculation involves 421 atoms (621)*

Account for the Moirè pattern. Do not account for Moiré/Ru(0001) rotation

Graphene and topmost Ru(0001) allowed to relax (D-correction included in relaxation)

Charge analysis using Bader's theory

Tersoff-Hamann to simulate STM images

VASP program Γ -point only BZ sampling Ru semi-core included $E_{cut} = 400 \text{ eV}$ Residual forces criterion = 0.01 eV/Å³

Theoretical Results

Graphene/Ru(0001)

Phys. Rev. Lett. 106, 186102 (2011) Phys. Rev. B 85, 121404 (2012)

d_{min} (C/Ru) = 2.19 Å Binding Energy = 0.2 eV/C atom

Graphene corrugation = 1.19 Å

Ripple height is about 0.4 Å lower compared to standard DFT

Residual forces on C atoms : With Dispersion Correction

Theoretical Results

Graphene/Ru(0001)

Phys. Rev. Lett. 106, 186102 (2011) Phys. Rev. B 85, 121404 (2012)

 d_{min} (C/Ru) = 2.19 Å Binding Energy = 0.2 eV/C atom

Graphene corrugation = 1.19 Å

Ripple height is about 0.4 Å lower compared to standard DFT

Residual forces on C atoms : Without Dispersion Correction

AND LAVER.

Contribution from dispersion forces is localized on the ripple region

Neglecting the dispersion contribution leads to an increase of the ripple height 1.59 Å (+25%)

Comparison STM Topography - Apparent Height

Experimental $V_s = -1.0 V$

Simulated (Tersoff-Hamann) Electron density isocontour $1.69 \times 10^{-4} \text{ Å}^{-3}$ Apparent corrugation vs. Voltage Corrugation: 1.19 Å 1.59 Å

TCNQ Graphene/Ru(0001)

position	bridge	fcc-hcp	hcp-top
Adsorption Energy (eV)			
b	-2.62	-2.48	-2.38
c	-2.58	-2.53	-2.37

Adsorption on the low areas of the moiré (0.25 eV lower E)

No preferential adsorption configuration

TCNQ Graphene/Ru(0001)

position	bridge	fcc-hcp	hcp-top
Adsorption Energy (eV)			
b	-2.62	-2.48	-2.38
С	-2.58	-2.53	-2.37

Electronic density redistribution

Blue: el. accumulation

Charge redistribution

(Bader): 1.05 electrons

(xy-integrated) : 1.0 electrons

PDOS on (s,p) atomic orbitals

Comparison with STM experiments

Spin density redistribution

Results

TCNQ Dimer on graphene/Ru(0001)

LDOS [-0.4eV:0eV]

Exp: V=-0.4V

Gas phase

Electronic density redistribution

PDOS on TCNQ (s,p) orbitals

TCNQ Dimer on graphene/Ru(0001)

LDOS [-0.4eV:0eV]

Exp: V=-0.4V

Gas phase

TCNQ-monolayer on graphene/Ru(0001)

Model

1 TCNQ molecule on top of the ripple Used to simulate STM images

Charge transfer = 0.6-0.7 electrons/molecule

Science (submitted)

TCNQ Graphene/Ru(0001)

STM images for TCNQ-ml/graphene/Ru(0001)

LDOS [-1.5eV:0.9eV]

LDOS [-0.3eV:0eV]

LDOS [0eV:0.3eV]

(V = -2.0V) HOMO

(V = -0.8V)SOMO

(V = +1V)SUMO

TCNQ Graphene/Ru(0001)

STM images for TCNQ-ml/graphene/Ru(0001)

LDOS LDOS LDOS [-0.3eV:0eV] [0eV:0.3eV] [-1.5eV:0.9eV] Magnetic moment © 0.3 µg/molecule (V = -0.8V)(V = +1V)(V = -2.0V)SOMO SUMO

HOMO

TCNQ-monolayer

Singly occupied band and 1st unoccupied band

Experimental confirmation Spin-polarized STM measurement

Science (submitted)

Conclusions

- Computational modelling as a necessary tool to understand self-assembly patterns and electron transfers.
- Graphene/Ru(0001)

Van der Waals interactions are crucial to describe the corrugation of the system and the electron density distribution

• TCNQ on graphene/Ru(0001)

Graphene decouples the orbitals of TCNQ from the electronic states of the metal allowing a direct imaging of the electronic structure

Single TCNQ molecules acquire charge and develop sizeable magnetic moment

Monolayer behaves as a 2D organic ferromagnetic metal

Acknowledgments

Theory

Department of Chemistry UAM

Yang Wang

Daniele Stradi

Cristina Díaz

Fernando Martín

Donostia International Physics Centre

Daniel Sánchez Portal

Andrés Arnau Pino

Experiments

Department of Condensed Matter Physics – LASUAM- IMDEA – Nanoscience

D. Ecija, C. Urban, M. Trelka, R. Otero, J.M. Gallego, M. Garnica, S. Barja, B. Borca A.L. Vazquez de Parga, R. Miranda

Department of Organic Chemistry (U. Complutense Madrid)

L. Sánchez, M. A. Herranz, N. Martín,

Thank you for your attention

Experimental confirmation Spin-polarized STM measurement

Science (submitted)

Motivation

Observed self-assembly

Electron donors

Ex-TTF/Au(111) JPC C 114, 6503 (2010)

Zn-Porphyrine/Au(111) *CrysEngComm* 13, 5591 (2011)

Co-deposition

TCNQ/Cu(111) PCCP (Submitted)

Fe/TCNQ/Cu(111)

Motivation

Observed self-assembly

Changes in the activation barriers for isomerisation (DCNQI)

