Chapel: Locality Control
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The Locale

e Definition
e Abstract unit of target architecture

e Capable of running tasks and storing variables
e j.e., has processors and memory

e Supports reasoning about locality

e Properties
* a locale’s tasks have ~uniform access to local vars
e Other locale’s vars are accessible, but at a price

e Locale Examples

* A multi-core processor
* An SMP node



Locales and Program Startup
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e Specify # of locales when running Chapel programs

$ a.out ——numLocales=8]

% a.out —nl 8]

numLocales: 8

LocaleSpace:

tocales: HEEENEDE

e Chapel provides built-in locale variables

config const numlocales: int;
const LocaleSpace: domain(l) = [0..numLocales-1];
const lLocales: [LocaleSpace] locale;

* main() begins as a single task on locale #0 (rocales(0])



Rearranging Locales
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Create locale views with standard array operations:

var TaskAlLocs = Locales[0..1]; )
var TaskBLocs = Locales|[2..numLocales-1];
var Grid2D = Locales.reshape([1l..2, 1..4]);

Locales

TaskALocs:

TaskBLocs

Grid2D

T s s L
nm
Tl lus s o

nEEmn
' OEne



Locale Methods

® |def locale.id: int { ... }]

Returns locale’s index in LocaleSpace

¢ |def locale.name: string { ... }]

Returns name of locale, if available (like uname -a)

® |def locale.numCores: int { ... } ]

Returns number of processor cores available to locale

o |def locale.physicalMemory(...) { ... } ]

Returns physical memory available to user programs on locale
Example ]

const totalPhysicalMemory =
+ reduce Locales.physicalMemory () ;




The On Statement

e Syntax

on—-stmt:
on expr { stmt }

e Semantics
Executes stmt on the locale that stores expr
Does not introduce concurrency

e Examples

writeln (“'start on locale O”);\

on Locales(l) do
writeln (“now on locale 17);

writeln (“on locale 0 again”); var A: [LocaleSpace] real; A

coforall loc in Locales do
on loc do
A(loc.id) = compute(loc.id);
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SPMD Programming in Chapel Revisited

e A language may support both global- and local-view
programming — in particular, Chapel does

def main () {
coforall loc in Locales do
on loc do
MySPMDProgram(loc.id, Locales.numElements) ;

def MySPMDProgram (me, p) {
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Querying a Variable's Locale

e Syntax

locale-query—-expr:
expr . locale

e Semantics
Returns the locale on which expr is stored

e Example
var i: int; A
on Locales (1) {
var j: int;
writeln(i.locale.id, j.locale.id); // outputs 01
}
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Here

e Built-in locale value

const here: locale;]

e Semantics
Refers to the locale on which the task is executing

e Example

writeln (here.id) ; // outputs 0
on Locales(l) do
writeln (here.id); // outputs 1




Serial Example with Implicit Communication
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var x, y: real;

on Locales (1) {
var z: real;

z = X t vy,

on lLocales(0) do
z = X t vy

on x do
Z=X-|—y;

//

//
//

//

//
//
//
//
//
//
//

x and y allocated on locale 0 ‘\\\

migrate task to locale 1
z allocated on locale 1

remote reads of x and y

migrate back to locale 0

remote write to z

migrate back to locale 1
data-driven migration to locale 0
remote write to z

migrate back to locale 1

migrate back to locale 0

<



Local statement

e Syntax

local-stmt:

local { stmt };]

e Semantics
Asserts to the compiler that all operations are local

e Example

}

on Locales (1)
var x: int;

local {

{

x = here.id;

}

writeln (x) ;

// outputs 1

~
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Serial Example revisited

var x, y: real; // x and y allocated on locale‘B\\\
on Locales (1) { // migrate task to locale 1

var z: real; // z allocated on locale 1

z = X + y; // remote reads of x and y

on Locales (0) { // migrate back to locale 0

var tz: real;
local tz = x+y; // no “checks” performed
z = tz; // remote write to z
} // migrate back to locale 1

} // migrate back to locale 0

<



Executing Multi-Locale Programs

e By default, Chapel compiles for a single locale
e environment variable CHPL_COMM defaults to ‘none’
e Effect: no communication inserted by compiler
e Locales array supported, but has just one element

e To execute using multiple locales...
e Set environment variable CHPL_COMM to ‘gasnet’
* (recompile Chapel runtime libraries)

e See README.multilocale and README.launcher for further
details



Outline

e |Locales

e Domain Maps
e Layouts
e Distributions

e Chapel Standard Layouts and Distributions
e User-defined Domain Maps

Chapel: Domain Maps
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Flashback: Data Parallelism

Domains are first-class index sets
Specify the size and shape of arrays
Support iteration, array operations, etc.

InnerD




Data Parallelism: Implementation Qs

Q1: How are arrays laid out in memory?

Are regular arrays laid out in row- or column-major order? Or...?
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What data structure is used to store sparse arrays? (COO, CSR, ...?)

Q2: How are data parallel operators implemented?
How many tasks?
How is the iteration space divided between the tasks?

[ |
unamically |

A: Chapel’s domain maps are designed to give the user
full control over such decisions



Domain Maps
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Domain maps are “recipes” that instruct the compiler
ne global view of a computation...

how to map t

...to a locale’s memory and processors:
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Domain Map Definitions

Domain maps define:
* Ownership of domain indices and array elements
e Underlying representation of indices and elements

e Standard operations on domains and arrays
e E.g, iteration, slicing, access, reindexing, rank change

* How to farm out work
e E.g., forall loops over distributed domains/arrays

Domain maps are built using Chapel concepts
» classes, iterators, type inference, generic types
* task parallelism
* |locales and on-clauses
* domains and arrays
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Multiresolution Language Design, Revisited

Chapel language concepts

( Domain Maps )
Data Parallelism

Base Language

Locality Control
Target Machine




Domain Maps: Layouts and Distributions

Domain Maps fall into two major categories:

layouts: target a single shared memory segment
e (that is, a desktop machine or multicore node)

e examples: row- and column-major order, tilings,
compressed sparse row

distributions: target distinct memory segments
e (that is a distributed memory cluster or supercomputer)
e examples: Block, Cyclic, Block-Cyclic, Recursive Bisection, ...



Sample Distributions: Block and Cyclic
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var Dom: domain (2)

= [1..4,

dmapped Block (boundingBox=[1..4, 1..8]) ]
-817

d b d LO LT 'L2° L3
istributed to
e

var Dom: domain (2)

= [1..4,

dmapped Cyclic (startIdx=(1,1)) 1
.81

1

1

d b d Lo LT 'L2 L3
istributed to
. L5 L6 | L7
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Chapel’s Domain Map Strategy

1. Chapel provides a library of standard domain maps
* to support common array implementations effortlessly

2. Advanced users can write their own domain maps in Chapel
* to cope with shortcomings in our standard library

3. Chapel’s standard layouts and distributions will be written

using the same user-defined domain map framework
* to avoid a performance cliff between “built-in” and user-defined

domain maps
4. Domain maps should only affect implementation and

performance, not semantics
* to support switching between domain maps effortlessly
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Using Domain Maps

* Syntax

dmap-type:

dmap (dmap-class(..))
dmap-value:

new dmap (new dmap-class(..))

e Semantics

Domain maps specify how a domain and its arrays are
implemented

e Examples
use myDMapMod; A
var DMap: dmap (myDMap (..)) = new dmap (new myDMap (..)) ;
var Dom: domain(..) dmapped DMap;
var A: [Dom] real;
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All doma

Semantics are independent of domain map.
(Thoug

in types can be dmapped.

n performance and parallelism will vary...)
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e | ocales
¢ Domain Maps

e Chapel Standard Layouts and Distributions
e Block
e Cyclic

e User-defined Domain Maps

Chapel: Domain Maps




Sample Distributions: Block and Cyclic
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var Dom: domain (2)

= [1..4,

dmapped Block (boundingBox=[1..4, 1..8]) ]
-817

d b d LO LT 'L2° L3
istributed to
e

var Dom: domain (2)

= [1..4,

dmapped Cyclic (startIdx=(1,1)) 1
.81

1

1

d b d Lo LT 'L2 L3
istributed to
. L5 L6 | L7



The Block class constructor
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def Block (boundingBox: domain, \\
targetLocales: [] locale = Locales,
dataParTasksPerLocale = ...,
dataParIgnoreRunningTasks =
dataParMinGranularity = ...,
param rank = boundingBox.rank,
type 1idxType = boundingBox.dim(1l) .eltType)

8

LO | L1 FL2° L3

distributed to

. L5 L6 L7




The Cyclic class constructor
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def Cyclic(startIdx,

param rank:
type 1dxType =

targetLocales: [] locale = Locales,
dataParTasksPerlLocale = ...,
dataParIgnoreRunningTasks = ...,
dataParMinGranularity = ...,

int

infered from startIdx,
infered from startIdx)

1 8

d b d L0 LT 'L2° L3
istributed to
. L5 L6 | L7
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e Locales

¢ Domain Maps

e Chapel Standard Layouts and Distributions
e User-defined Domain Map Descriptors

Chapel: Domain Maps




User-Defined Distribution Descriptors

Global
one instance
per object

(logically)

Local
one instance
per node
per object

(typically)

Domain Map

/

Role: Similar to \
layout’s domain map
descriptor

Domain

Role: Similar to \
layout’s domain
descriptor, butno
T (#indices) storage

Size:T(1)

J

Stores node-
specific domain map
parameters

&

" )

Storesnode’s
subset of domain’s
index set

T()?
T (#indices/ #node3
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Array

Role: Similar to \
layout’s array
descriptor, but data
is movedtolocal
descriptors

Size:T(1)

_4

Storesnode’s
subsetofarray’s
elements

T (#indices/ #node$




Status: Locality

* Locales/on-clauses should be functioning perfectly
e Full-featured Block and Cyclic distributions
e Parallel sparse and associative layouts supported

* The compiler currently lacks several important
communication optimizations

* Need to finalize user-defined domain map interfaces
* Need sparse and opaque distributions
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Future Directions

e Hierarchical Locales

e Expose hierarchy, heterogeneity within locales
e Particularly important in next-generation nodes
e CPU+GPU hybrids, tiled processors, manycore, ...

e Specify interface for user-defined domain maps

e Advanced uses of domain maps:
e GPU programming
* Dynamic load balancing
* Resilient computation
* in situ interoperability
* QOut-of-core computations



Questions?

e Multi-Locale Basics
e |Locales
® ON

¢ Domain maps

e Layouts
e Distributions

e The Chapel Standard Distributions
e Block Distribution
e Cyclic Distribution

ser-defined Domain Maps

Chapel: Domain Maps




