Chapel: Locality Control

THE SUPERCOMPU

The Locale

e Definition
e Abstract unit of target architecture

e Capable of running tasks and storing variables
e j.e., has processors and memory

e Supports reasoning about locality

e Properties
* a locale’s tasks have ~uniform access to local vars
e Other locale’s vars are accessible, but at a price

e Locale Examples

* A multi-core processor
* An SMP node

Locales and Program Startup

CRANY

THE SUPERCOMPUTER COMPANY

e Specify # of locales when running Chapel programs

$ a.out ——numLocales=8]

% a.out —nl 8]

numLocales: 8

LocaleSpace:

tocales: HEEENEDE

e Chapel provides built-in locale variables

config const numlocales: int;
const LocaleSpace: domain(l) = [0..numLocales-1];
const lLocales: [LocaleSpace] locale;

* main() begins as a single task on locale #0 (rocales(0])

Rearranging Locales

CRRANY

THE SUPERCOMPUTER COMPANY

Create locale views with standard array operations:

var TaskAlLocs = Locales[0..1];)
var TaskBLocs = Locales|[2..numLocales-1];
var Grid2D = Locales.reshape([1l..2, 1..4]);

Locales

TaskALocs:

TaskBLocs

Grid2D

T s s L
nm
Tl lus s o

nEEmn
' OEne

Locale Methods

® |def locale.id: int { ... }]

Returns locale’s index in LocaleSpace

¢ |def locale.name: string { ... }]

Returns name of locale, if available (like uname -a)

® |def locale.numCores: int { ... }]

Returns number of processor cores available to locale

o |def locale.physicalMemory(...) { ... }]

Returns physical memory available to user programs on locale
Example]

const totalPhysicalMemory =
+ reduce Locales.physicalMemory () ;

The On Statement

e Syntax

on—-stmt:
on expr { stmt }

e Semantics
Executes stmt on the locale that stores expr
Does not introduce concurrency

e Examples

writeln (“'start on locale O”);\

on Locales(l) do
writeln (“now on locale 17);

writeln (“on locale 0 again”); var A: [LocaleSpace] real; A

coforall loc in Locales do
on loc do
A(loc.id) = compute(loc.id);

CRANY

THE SUPERCOMPUTER COMPANY

SPMD Programming in Chapel Revisited

e A language may support both global- and local-view
programming — in particular, Chapel does

def main () {
coforall loc in Locales do
on loc do
MySPMDProgram(loc.id, Locales.numElements) ;

def MySPMDProgram (me, p) {

CRANY

THE SUPERCOMPUTER COMPANY

Querying a Variable's Locale

e Syntax

locale-query—-expr:
expr . locale

e Semantics
Returns the locale on which expr is stored

e Example
var i: int; A
on Locales (1) {
var j: int;
writeln(i.locale.id, j.locale.id); // outputs 01
}

CRANY

THE SUPERCOMPUTER COMPANY

Here

e Built-in locale value

const here: locale;]

e Semantics
Refers to the locale on which the task is executing

e Example

writeln (here.id) ; // outputs 0
on Locales(l) do
writeln (here.id); // outputs 1

Serial Example with Implicit Communication

CRANY

THE SUPERCOMPUTER COMPANY

var x, y: real;

on Locales (1) {
var z: real;

z = X t vy,

on lLocales(0) do
z = X t vy

on x do
Z=X-|—y;

//

//
//

//

//
//
//
//
//
//
//

x and y allocated on locale 0 ‘\\\

migrate task to locale 1
z allocated on locale 1

remote reads of x and y

migrate back to locale 0

remote write to z

migrate back to locale 1
data-driven migration to locale 0
remote write to z

migrate back to locale 1

migrate back to locale 0

<

Local statement

e Syntax

local-stmt:

local { stmt };]

e Semantics
Asserts to the compiler that all operations are local

e Example

}

on Locales (1)
var x: int;

local {

{

x = here.id;

}

writeln (x) ;

// outputs 1

~

CRRANY

THE SUPERCOMPUTER COMPANY

CRANY

THE SUPERCOMPUTER COMPANY

Serial Example revisited

var x, y: real; // x and y allocated on locale‘B\\\
on Locales (1) { // migrate task to locale 1

var z: real; // z allocated on locale 1

z = X + y; // remote reads of x and y

on Locales (0) { // migrate back to locale 0

var tz: real;
local tz = x+y; // no “checks” performed
z = tz; // remote write to z
} // migrate back to locale 1

} // migrate back to locale 0

<

Executing Multi-Locale Programs

e By default, Chapel compiles for a single locale
e environment variable CHPL_COMM defaults to ‘none’
e Effect: no communication inserted by compiler
e Locales array supported, but has just one element

e To execute using multiple locales...
e Set environment variable CHPL_COMM to ‘gasnet’
* (recompile Chapel runtime libraries)

e See README.multilocale and README.launcher for further
details

Outline

e |Locales

e Domain Maps
e Layouts
e Distributions

e Chapel Standard Layouts and Distributions
e User-defined Domain Maps

Chapel: Domain Maps

CRANY

THE SUPERCOMPUTER COMPANY

Flashback: Data Parallelism

Domains are first-class index sets
Specify the size and shape of arrays
Support iteration, array operations, etc.

InnerD

Data Parallelism: Implementation Qs

Q1: How are arrays laid out in memory?

Are regular arrays laid out in row- or column-major order? Or...?

= A R A : %z :
= il F I+ ¥+ 3 a3 |3
= = 22K ZaE=S 2> 2113

What data structure is used to store sparse arrays? (COO, CSR, ...?)

Q2: How are data parallel operators implemented?
How many tasks?
How is the iteration space divided between the tasks?

[|
unamically |

A: Chapel’s domain maps are designed to give the user
full control over such decisions

Domain Maps

CRANY

THE SUPERCOMPUTER COMPANY

Domain maps are “recipes” that instruct the compiler
ne global view of a computation...

how to map t

...to a locale’s memory and processors:

I
|
I
|
+ 1
|
I
I
[

CRANY

THE SUPERCOMPUTER COMPANY

Domain Map Definitions

Domain maps define:
* Ownership of domain indices and array elements
e Underlying representation of indices and elements

e Standard operations on domains and arrays
e E.g, iteration, slicing, access, reindexing, rank change

* How to farm out work
e E.g., forall loops over distributed domains/arrays

Domain maps are built using Chapel concepts
» classes, iterators, type inference, generic types
* task parallelism
* |locales and on-clauses
* domains and arrays

CRANY

THE SUPERCOMPUTER COMPANY

Multiresolution Language Design, Revisited

Chapel language concepts

(Domain Maps)
Data Parallelism

Base Language

Locality Control
Target Machine

Domain Maps: Layouts and Distributions

Domain Maps fall into two major categories:

layouts: target a single shared memory segment
e (that is, a desktop machine or multicore node)

e examples: row- and column-major order, tilings,
compressed sparse row

distributions: target distinct memory segments
e (that is a distributed memory cluster or supercomputer)
e examples: Block, Cyclic, Block-Cyclic, Recursive Bisection, ...

Sample Distributions: Block and Cyclic

CRANY

THE SUPERCOMPUTER COMPANY

var Dom: domain (2)

= [1..4,

dmapped Block (boundingBox=[1..4, 1..8])]
-817

d b d LO LT 'L2° L3
istributed to
e

var Dom: domain (2)

= [1..4,

dmapped Cyclic (startIdx=(1,1)) 1
.81

1

1

d b d Lo LT 'L2 L3
istributed to
. L5 L6 | L7

CRANY

THE SUPERCOMPUTER COMPANY

Chapel’s Domain Map Strategy

1. Chapel provides a library of standard domain maps
* to support common array implementations effortlessly

2. Advanced users can write their own domain maps in Chapel
* to cope with shortcomings in our standard library

3. Chapel’s standard layouts and distributions will be written

using the same user-defined domain map framework
* to avoid a performance cliff between “built-in” and user-defined

domain maps
4. Domain maps should only affect implementation and

performance, not semantics
* to support switching between domain maps effortlessly

CRANY

THE SUPERCOMPUTER COMPANY

Using Domain Maps

* Syntax

dmap-type:

dmap (dmap-class(..))
dmap-value:

new dmap (new dmap-class(..))

e Semantics

Domain maps specify how a domain and its arrays are
implemented

e Examples
use myDMapMod; A
var DMap: dmap (myDMap (..)) = new dmap (new myDMap (..)) ;
var Dom: domain(..) dmapped DMap;
var A: [Dom] real;

Domain Map Types E S FEROORPTTEN QORBANY

All doma

Semantics are independent of domain map.
(Thoug

in types can be dmapped.

n performance and parallelism will vary...)

= - o | B ——

O
| HIEEEEE ENEEEEE BN

Sparsée

Associative

Outline = Mo

e | ocales
¢ Domain Maps

e Chapel Standard Layouts and Distributions
e Block
e Cyclic

e User-defined Domain Maps

Chapel: Domain Maps

Sample Distributions: Block and Cyclic

CRANY

THE SUPERCOMPUTER COMPANY

var Dom: domain (2)

= [1..4,

dmapped Block (boundingBox=[1..4, 1..8])]
-817

d b d LO LT 'L2° L3
istributed to
e

var Dom: domain (2)

= [1..4,

dmapped Cyclic (startIdx=(1,1)) 1
.81

1

1

d b d Lo LT 'L2 L3
istributed to
. L5 L6 | L7

The Block class constructor

CRANY

THE SUPERCOMPUTER COMPANY

def Block (boundingBox: domain, \\
targetLocales: [] locale = Locales,
dataParTasksPerLocale = ...,
dataParIgnoreRunningTasks =
dataParMinGranularity = ...,
param rank = boundingBox.rank,
type 1idxType = boundingBox.dim(1l) .eltType)

8

LO | L1 FL2° L3

distributed to

. L5 L6 L7

The Cyclic class constructor

CRANY

THE SUPERCOMPUTER COMPANY

def Cyclic(startIdx,

param rank:
type 1dxType =

targetLocales: [] locale = Locales,
dataParTasksPerlLocale = ...,
dataParIgnoreRunningTasks = ...,
dataParMinGranularity = ...,

int

infered from startIdx,
infered from startIdx)

1 8

d b d L0 LT 'L2° L3
istributed to
. L5 L6 | L7

Outline e ——

e Locales

¢ Domain Maps

e Chapel Standard Layouts and Distributions
e User-defined Domain Map Descriptors

Chapel: Domain Maps

User-Defined Distribution Descriptors

Global
one instance
per object

(logically)

Local
one instance
per node
per object

(typically)

Domain Map

/

Role: Similar to \
layout’s domain map
descriptor

Domain

Role: Similar to \
layout’s domain
descriptor, butno
T (#indices) storage

Size:T(1)

J

Stores node-
specific domain map
parameters

&

")

Storesnode’s
subset of domain’s
index set

T()?
T (#indices/ #node3

CRRANY

THE SUPERCOMPUTER COMPANY

Array

Role: Similar to \
layout’s array
descriptor, but data
is movedtolocal
descriptors

Size:T(1)

_4

Storesnode’s
subsetofarray’s
elements

T (#indices/ #node$

Status: Locality

* Locales/on-clauses should be functioning perfectly
e Full-featured Block and Cyclic distributions
e Parallel sparse and associative layouts supported

* The compiler currently lacks several important
communication optimizations

* Need to finalize user-defined domain map interfaces
* Need sparse and opaque distributions

CRANY

THE SUPERCOMPUTER COMPANY

Future Directions

e Hierarchical Locales

e Expose hierarchy, heterogeneity within locales
e Particularly important in next-generation nodes
e CPU+GPU hybrids, tiled processors, manycore, ...

e Specify interface for user-defined domain maps

e Advanced uses of domain maps:
e GPU programming
* Dynamic load balancing
* Resilient computation
* in situ interoperability
* QOut-of-core computations

Questions?

e Multi-Locale Basics
e |Locales
® ON

¢ Domain maps

e Layouts
e Distributions

e The Chapel Standard Distributions
e Block Distribution
e Cyclic Distribution

ser-defined Domain Maps

Chapel: Domain Maps

