Web Scale Music Analysis

A grand challenge in computational musicology

David De Roure

Overview

This talk is both *computational* and *social*

- 1. How is research done today?
 - Structural Analysis of Large Amounts of Music
 Information (SALAMI) a case study in
 Computational Musicology
- 2. What are the implications for our 'knowledge infrastructure'?
 - Research Objects and Social Machines

http://research.microsoft.com/en-us/collaboration/fourthparadigm/

The Problem

						unde	rstand	ing
	INT.	VERSE	VERSE	BRIDGE	VERSE	BRIDGE	VERSE	CUT.
1								

0.000000000 0.429569160 4.109931972 7.783401360 15.153628117 18.890045351 26.284988662 33.523809523 40.857528344 44.563242630 52.006893424 55.805986394 63.245351473 70.530612244 77.929659863 81.653061224 89.042721088 92.834535147 100.327619047 107.647709750 114.956190476 122.258730158 129.544126984 136.434648526 139.334648526

Ashley Burgoyne

salami.music.mcgill.ca

Jordan B. L. Smith, J. Ashley Burgoyne, Ichiro Fujinaga, David De Roure, and J. Stephen Downie. 2011. Design and creation of a large-scale database of structural annotations. In Proceedings of the International Society for Music Information Retrieval Conference, Miami, FL, 555–60

Segment Ontology

Ontology models properties from musicological domain

- Independent of Music Information Retrieval research and signal processing foundations
- Maintains an accurate and complete description of relationships that link them

Ben Fields, Kevin Page, David De Roure and Tim Crawford (2011) "The Segment Ontology: Bridging Music-Generic and Domain-Specific" in 3rd International Workshop on Advances in Music Information Research (AdMIRe 2011) held in conjunction with IEEE International Conference on Multimedia and Expo (ICME), Barcelona, July 2011

Music Information Retrieval Evaluation eXchange

MIREX TASKS								
Audio Artist Identification	Audio Onset Detection							
Audio Beat Tracking	Audio Tag Classification							
Audio Chord Detection	Audio Tempo Extraction							
Audio Classical Composer ID	Multiple F0 Estimation							
Audio Cover Song Identification	Multiple F0 Note Detection							
Audio Drum Detection	Query-by-Singing/Humming							
Audio Genre Classification	Query-by-Tapping							
Audio Key Finding	Score Following							
Audio Melody Extraction	Symbolic Genre Classification							
Audio Mood Classification	Symbolic Key Finding							
Audio Music Similarity	Symbolic Melodic Similarity							

Downie, J. Stephen, Andreas F. Ehmann, Mert Bay and M. Cameron Jones. (2010). The Music Information Retrieval Evaluation eXchange: Some Observations and Insights. Advances in Music Information Retrieval Vol. 274, pp. 93-115

Structural Segmentation - MIREX '09

SubID	Participants	MIREX 09 F-measure	MIREX 10 RWC/Quaer SB@3sec	MIREX 10 oRWC/RWC F-measure	Salami F-measure
SMGA1	Joan Serrà, Meinard Müller, Peter Grosche, Josep Lluis Arcos	0.65	0.77	0.68	0.58
SMGA2	Joan Serrà, Meinard Müller, Peter Grosche, Josep Lluis Arcos	0.63	0.76	0.69	0.53
KSP3	Florian Kaiser, Thomas Sikora, Geoffroy Peeters	0.57	0.66	0.60	0.53
MHRAF1	Benjamin Martin, Pierre Hanna, Matthias Robine, Julien Allali, Pascal Ferraro	0.56	0.54	0.58	0.57
KSP1	Florian Kaiser, Thomas Sikora, Geoffroy Peeters	0.55	0.66	0.60	0.50
SP1	Florian Kaiser, Thomas Sikora, Geoffroy Peeters	0.55	0.66	0.56	0.55
KSP2	Florian Kaiser, Thomas Sikora, Geoffroy Peeters	0.54	0.66	0.58	0.53
SBV1	Gabriel Sargent, Frédéric Bimbot, Emmanuel Vincent	0.51	0.63	0.54	0.46
OYZS1	Nobutaka Ono, Shinya Yaku, Yuko Zou, Shigeki Sagayama	0.46	0.53	0.51	0.50

Meandre

seasr.org/meandre

R meandre

chromogram

Chroma Self-Similarity Map

Hard Day's Night: Self-Similarity Map

Chroma Self-Similarity Map

Analysing chord structure

ground truth chords	D	G C	G	B:min	E:min	B:min	G	ł	E:min	С	D:7	G
auto chords using auto seg.	D	G/5 C:	7 G	B:min			G	ł	C:maj7	C:maj6	D:7	G
auto chords baseline meth.	D	G		B:min			G	i	E:min	С	D:7	G
	40	42	44	46	48	50	52	54	4	56	58	60

Matthias Mauch

THE UNIVERSITY of TENNESSEE

The National Institute for Computational Sciences

KNOXVILLE

ICHASS

Institute for Computing in Humanities, Arts, and Social Science Kraken XT5 Cray Linux Environment 3.1 Peak performance: 1.17 PF Compute cores: 112,896 Compute memory: 147 TB Disk space: 3.3 PB Compute nodes: 9,408 Interconnect: Cray SeaStar2+

Stephen Downie

÷]

Search

Michelle

text search form search advanced search audio search

titles

Track Artists

P	lay all c	f: Michelle								
AD	BD	े B ि २	Ce		BDQ CD	Q B	D٩	CDQ	B⊳Q	
C				ADS		A			D 🕑 🔍	EDQ
							×			
						Server and		A Contraction of the		
	\mathcal{X}								\times	
				ene i						
							~			
		n (The fill				TU	
	112			MAK	alla (risa					
	<u>,</u> 32.				\times				X	
	634	行論的								as national
			\nearrow						344	
	X								X	
	X						17-34 (* 1-14)		David	Bainbridge
	-		al Marta	P					2 2 4	

SALAMI results: a living experiment

It's web-like! "Ground Truth" Community **Digital Audio** "Signal" Structural Analysis

De Roure, D. Page, K.R., Fields, B., Crawford, T., Downie, J.S. and Fujinaga, I. (2011) "An e-Research Approach to Web-Scale Music Analysis", Philosophical Transactions of the Royal Society Series A

Linked Data Resources

MusicBrainz

RDF conversions of MusicBrainz data

Geonames

Information about locations

DBpedia

Structured representation of Wikipedia content BBC

Programme information, artist information

Sean Bechhofer, Kevin Page **and** David De Roure. Hello Cleveland! Linked Data Publication Of Live Music Archives. 14th International Workshop on Image and Audio Analysis for Multimedia Interactive services

Overview

This talk is both *computational* and *social*

- 1. How is research done today?
 - Structural Analysis of Large Amounts of Music
 Information (SALAMI) a case study in
 Computational Musicology
- 2. What are the implications for our 'knowledge infrastructure'?
 - Research Objects and Social Machines

An e-Research approach to Web-scale music analysis

David De Roure, Kevin R. Page, Benjamin Fields, Tim Crawford, J. Stephen Downie and Ichiro Fujinaga

Phil. Trans. R. Soc. A 2011 **369**, 3300-3317 doi: 10.1098/rsta.2011.0171

References	This article cites 5 articles http://rsta.royalsocietypublishing.org/content/369/1949/3300.ful l.html#ref-list-1
	Article cited in: http://rsta.royalsocietypublishing.org/content/369/1949/3300.full.html# related-urls
Subject collections	Articles on similar topics can be found in the following collections
	e-science (43 articles)
Email alerting service	Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click here

A revolutionary idea... Open Science!

To subscribe to *Phil. Trans. R. Soc. A* go to: http://rsta.royalsocietypublishing.org/subscriptions

Notifications and automatic re-runs Autonomic Self-repair Curation

New research?

Jun Zhao et al. "Why Workflows Break - Understanding and Combating Decay in Taverna Workflows", IEEE escience 2012, Chicago Khalid Belhajjame et al "Workflow Centric Research Objects: First Class Citizens in Scholarly Discourse", SeFerelica2012 at ESWC2012, Greece, May 2012 Belhajjame, Goble, Soiland-Reyes, De Roure. Fostering Scientific Workflow Preservation Trough Discovery of Substitute Services. IEEE eScience 2011, Stockholn Machines are used users too

WWW GRAPHIQUE 3D REPUBLIKA PL

Explore the surface of the

How do galaxies form? NASA's Hubble Space Telescope

ZOONIVERSE REAL SCIENCE ONLINE

Moon

GALAXY ZOO

Hear Whales communicate

You can help marine researchers understand what whales are saying

WHLE_{FM}

Model Earth's climate using historic ship logs

Help scientists recover Arctic

Help explore the ocean floor

The HabCam team and the Woods Hole Oceanographic Institution need your help!

EAFLOOR EXPLORER

Classify over 30 years of tropical cyclone data.

Scientists at NOAA's National

Greeks

The data gathered by Ancient

data.

Mike Beatini, Pamela L. Gay, Bill Keel, Kelly McCullough

Mike Schoenberg, and

Jason & Jodi Thibeault

Kelly McCullough & Pamela L. Gay

edited by

A Project of the ZOONIVERSE http://hannysvoorwerp.zooniverse.org

You can help scientists from the

Human Computation

Crowdsourcing

Wisdom of crowds

Open Innovation

Social Computing

Social Machine

Collective Intelligence

Nigel Shadbolt et al

Big data elephant versus sense-making network?

The challenge is to foster the co-constituted socio-technical system on the right i.e. a computationally-enabled sense-making network of expertise, data, models and narratives.

This requires a "social machines" perspective from the outset as well as humanistic input. The Web, and with it Web Science, are an important exemplar.

Evolving the myExperiment Social Machine

The R dimensions

Reusable. The key tenet of Research Objects is to support the sharing and reuse of data, methods and processes.

Repurposeable. Reuse may also involve the reuse of constituent parts of the Research Object.

Repeatable. There should be sufficient information in a Research Object to be able to repeat the study, perhaps years later.

Reproducible. A third party can start with the same inputs and methods and see if a prior result can be confirmed.

Replayable. Studies might involve single investigations that happen in milliseconds or protracted processes that take years.

Referenceable. If research objects are to augment or replace traditional publication methods, then they must be referenceable or citeable.

Revealable. Third parties must be able to audit the steps performed in the research in order to be convinced of the validity of results.

Respectful. Explicit representations of the provenance, lineage and flow of intellectual property.

Replacing the Paper: The Twelve Rs of the e-Research Record" on http://blogs.nature.com/eresearch/

Join the W3C Community Group www.w3.org/community/rosc

Kevin R. Page, Ben Fields, David De Roure, Tim Crawford, J. Stephen Downie, "Reuse, Remix, Repeat: The Workflows of MIR", 13th International Society for Music Information Retrieval Conference (ISMIR 2012)

The Order of Social Machines

Real life is and must be full of all kinds of social constraint – the very processes from which society arises. Computers can help if we use them to create abstract social machines on the Web: processes in which the people do the creative work and the machine does the administration... The stage is set for an evolutionary growth of new social engines.

Berners-Lee, Weaving the Web, 1999

Some Social Machines

What's the score at the Bodleian?

Closing questions

- 1. Where are you going in the Fourth Quadrant?
- 2. What are your Research Objects and what do computational ones look like?
- 3. What are the new Social Machines?

Thanks to Stephen Downie, Ich Fujinaga, Mark Sandler and their teams, to Tim Crawford, David Bainbridge, Kevin Page, Sean Bechhofer, Ben Fields, Jun Zhao, Nigel Shadbolt, Iain Buchan, and to Carole Goble and the my{Grid,Experiment} and wf4Ever teams.

david.deroure@oerc.ox.ac.uk

www.oerc.ox.ac.uk/people/dder http://www.scilogs.com/eresearch @dder

digital.humanities.ox.ac.uk www.researchobject.org semanticmedia.org.uk www.software.ac.uk webscience.org • SALAMI

http://salami.music.mcgill.ca/

- Music Information Retrieval Evaluation eXchange (MIREX) <u>http://www.music-ir.org/mirex</u>
- Semantic Media <u>http://semanticmedia.org.uk/</u>
- Research Objects <u>http://www.researchobject.org/</u>
- Workflow Forever project (Wf4Ever) <u>http://www.wf4ever-project.org/</u>
- Future of Research Communication (FORCE11) <u>http://force11.org/</u>
- Theory and Practice of Social Machines (SOCIAM) <u>http://sociam.org/</u>