
Timing Analysis of Event-Driven
Programs with Directed Testing

Mahdi Eslamimehr
Hesam Samimi

{eslamimehr, samimi}@ucla.edu
Communications Design Group, SAP Labs

Talk Outline

• Introduction
– Toyota UA Case
– Problem Definition and Previous Work
– Review of Classic Directed Testing
– Motivating Experiments

• Our Approach
– Example
– VICE: Algorithms and tools

• Experiment Results
• Conclusion

– Event-Based Directed Testing improves the state-of-
art

WCET

• Controllers in safety time-critical embedded
systems are expected to finish their tasks within
reliable time bounds.
– Underestimation causes missing deadlines and leads to

bugs
– Overestimation wastes process availability.

• Question: what is the exact WCET across all
inputs?
1. Program P, K is the WCET of all executions of P, if P’s

WCET never grows beyond K.
2. There is a possible schedule of events and an execution

of the program P such that the WCET becomes K.

WCET in Literature

– Dynamic Analysis
• Random Algorithms:

– [Bernat et. Al., RTSS’02]

• Genetic Algorithm:
– [Atanassov et. Al., EWDC’01]

• Classic Directed Testing:
– [N. Williams and M.Roger, AST’09]

– Static Analysis
– [Holsti et. Al., ESA’2000]
– [C.Ferdinand, BIS’04]
– [Gustafsson and Ermedahl, RTSS’06]

Classic Directed Testing
• Generate concrete inputs

one by one
– each input leads program

along a different path

• On each input execute
program both concretely
and symbolically
– concrete execution guides the

symbolic execution

– concrete execution enables
symbolic execution to
overcome incompleteness of
theorem prover

– symbolic execution helps to
generate concrete input for
next execution

– increases coverage

Input =
Random

While all
paths

covered?

Solving
constraints and
generate inputs

Concolically
execute and
collect path
constraints

End

Yes
No

Example
int double (int v) {

 return 2*v;
}

void testme (int x, int y) {

 z = double (y);

 if (z == x) {

 if (x > y+10) {

 ERROR;
 }
 }

}

Example
int double (int v) {

 return 2*v;
}

void testme (int x, int y) {

 z = double (y);

 if (z == x) {

 if (x > y+10) {

 ERROR;
 }
 }

}

ERROR

2*y == x

x > y+10

Y

Y

N

N

Directed Testing Approach
int double (int v) {

 return 2*v;
}

void testme (int x, int y) {

 z = double (y);

 if (z == x) {

 if (x > y+10) {

 ERROR;
 }
 }

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 22, y = 7 x = x0, y = y0

Directed Testing Approach
int double (int v) {

 return 2*v;
}

void testme (int x, int y) {

 z = double (y);

 if (z == x) {

 if (x > y+10) {

 ERROR;
 }
 }

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 22, y = 7, z
= 14

x = x0, y = y0,
z = 2*y0

Directed Testing Approach
int double (int v) {

 return 2*v;
}

void testme (int x, int y) {

 z = double (y);

 if (z == x) {

 if (x > y+10) {

 ERROR;
 }
 }

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 22, y = 7, z
= 14

x = x0, y = y0,
z = 2*y0

2*y0 != x0

Directed Testing Approach
int double (int v) {

 return 2*v;
}

void testme (int x, int y) {

 z = double (y);

 if (z == x) {

 if (x > y+10) {

 ERROR;
 }
 }

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

2*y0 != x0

Solve: 2*y0 == x0
Solution: x0 = 2, y0 = 1

x = 22, y = 7, z
= 14

x = x0, y = y0,
z = 2*y0

Directed Testing Approach
int double (int v) {

 return 2*v;
}

void testme (int x, int y) {

 z = double (y);

 if (z == x) {

 if (x > y+10) {

 ERROR;
 }
 }

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 2, y = 1 x = x0, y = y0

Directed Testing Approach
int double (int v) {

 return 2*v;
}

void testme (int x, int y) {

 z = double (y);

 if (z == x) {

 if (x > y+10) {

 ERROR;
 }
 }

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 2, y = 1,
z = 2

x = x0, y = y0,
z = 2*y0

Directed Testing Approach
int double (int v) {

 return 2*v;
}

void testme (int x, int y) {

 z = double (y);

 if (z == x) {

 if (x > y+10) {

 ERROR;
 }
 }

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 2, y = 1,
z = 2

x = x0, y = y0,
z = 2*y0

2*y0 == x0

Directed Testing Approach
int double (int v) {

 return 2*v;
}

void testme (int x, int y) {

 z = double (y);

 if (z == x) {

 if (x > y+10) {

 ERROR;
 }
 }

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 2, y = 1,
z = 2

x = x0, y = y0,
z = 2*y0

2*y0 == x0

x0 < y0+10

Directed Testing Approach
int double (int v) {

 return 2*v;
}

void testme (int x, int y) {

 z = double (y);

 if (z == x) {

 if (x > y+10) {

 ERROR;
 }
 }

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 2, y = 1,
z = 2

x = x0, y = y0,
z = 2*y0

Solve: (2*y0 == x0) Æ (x0 > y0 + 10)
Solution: x0 = 30, y0 = 15

2*y0 == x0

x0 < y0+10

Directed Testing Approach
int double (int v) {

 return 2*v;
}

void testme (int x, int y) {

 z = double (y);

 if (z == x) {

 if (x > y+10) {

 ERROR;
 }
 }

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 30, y = 15 x = x0, y = y0

Directed Testing Approach
int double (int v) {

 return 2*v;
}

void testme (int x, int y) {

 z = double (y);

 if (z == x) {

 if (x > y+10) {

 ERROR;
 }
 }

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 30, y = 15 x = x0, y = y0

2*y0 == x0

x0 > y0+10

Program Error

Explicit Path Model Checking
■ Traverse all execution

paths one by one to
detect errors
■ assertion violations
■ program crash
■ uncaught exceptions

F T

F F

F

F

T

T

T

T

T

T

Explicit Path Model Checking
■ Traverse all execution

paths one by one to
detect errors
■ assertion violations
■ program crash
■ uncaught exceptions

F T

F F

F

F

T

T

T

T

T

T

Explicit Path Model Checking
■ Traverse all execution

paths one by one to
detect errors
■ assertion violations
■ program crash
■ uncaught exceptions

F T

F F

F

F

T

T

T

T

T

T

Explicit Path Model Checking
■ Traverse all execution

paths one by one to
detect errors
■ assertion violations
■ program crash
■ uncaught exceptions

F T

F F

F

F

T

T

T

T

T

T

Explicit Path Model Checking
■ Traverse all execution

paths one by one to
detect errors
■ assertion violations
■ program crash
■ uncaught exceptions

F T

F F

F

F

T

T

T

T

T

T

Explicit Path Model Checking
■ Traverse all execution

paths one by one to
detect errors
■ assertion violations
■ program crash
■ uncaught exceptions

F T

F F

F

F

T

T

T

T

T

T

Motivating Experiments 
branch coverage across testing techniques

0%

25%

50%

75%

100%

BinaryTree LinkedList BubbleSort Decoder Oscilloscpoe Fannkuch MsgKernel TestRadio TestUSART TestSPI TestADC

Random Testing GA Classical Directed Testing

Motivating Experiments 
Testing VS Static Analysis of WCET

WCET

1

10

100

1000

BinaryTree LinkedList BubbleSort Decoder Oscilloscpoe Fannkuch MsgKernel TestRadio TestUSART TestSPI TestADC

Random Testing GA Classical Directed Testing
Static Analysis

Lo
ga

ri
th

m
ic

 S
ca

le

Testing Event Driven Software

• Classical software:
– tester only devices a suite of single inputs.

• Event-Driven software (with real-time
behavior):
– tester must device a suite of event sequences.

– In each sequence: # of events, types of
events, values associated with the events
e.g. registers’ value, and timing of events.

• Challenge: Quickly generate a small number
of challenging event sequences to improve
branch coverage.

VICE Example

Round 1
[<main,(723452)>,<alt1,(−10038)>,<main,_>,<alt1, _>]
Constraints: data_1 = msg ∧ data2 = msg ∧ −2048 < msg ∧ msg < 1024
Branch Coverage: 50% (3/6)

VICE Example

Round 2
[<main,(-338)>,<alt1,(1001)>,<alt2,(6)>,<main, _>]
Constraints: msg = s ∧ tmp = t ∧ s = 512
Branch Coverage: 83% (5/6)

VICE Example

Round 3
[<main,(-338)>,<alt1,(1001)>,<alt2,(6)>,<main, _>]
Constraints: data1 = data2 = msg = s = 512
Branch Coverage: 83% (5/6)

VICE Example

Round 4
[<main,(512)>,<alt1,(512)>,<main,_>,<alt1, _>]
Constraints: -
Branch Coverage: 100% (6/6)

Event Based Directed Testing (EBDT)

• compiler:
VirgilProgram ! machineCode

• avrora :
machineCode × eventSequence ! wcet

• random:
() ! eventSequence

• timeoutCombos:
eventSequence ! (eventSequence list)

• concolic:
(Virgil program × eventSeequence !
 (wcet × branchCoverage × constraints)

• solver:
constraints ! solution

• generator:
 solution ! eventSequence

Algorithm

Experiment Results
Branch Coverage

0%

25%

50%

75%

100%

BinaryTree LinkedList BubbleSort Decoder Oscilloscpoe Fannkuch MsgKernel TestRadio TestUSART TestSPI TestADC

Random Testing GA Classical Directed Testing VICE

Experiment Results
WCET

1

10

100

1000

BinaryTree LinkedList BubbleSort Decoder Oscilloscpoe Fannkuch MsgKernel TestRadio TestUSART TestSPI TestADC

Random Testing GA Classical Directed Testing VICE
Static Analysis

Lo
ga

ri
th

m
ic

 S
ca

le

Future Works

• Formulating timeouts symbolically
• Using some static information

• Locate places where wcet happens, and
direct execution towards candidates

• Replace random event generation with
a IMR-certified model checker.

